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CHAPTER 1

Introduction

Let (W, S) be a Coxeter system and let T =
⋃

w∈W wSw−1 denote
the reflections in W . A finite dimensional representation V of W is re-
flection faithful if it is faithful and, for all w ∈ W , V w has codimension
1 in V if and only if w is a reflection. For example, if W is finite then
the geometric representation of W is reflection faithful.

Let us fix a reflection faithful representation V of W over a field k of
characteristic 0. Let R be the ring of regular functions on V , graded so
that V ∗ has degree 2. The ring R carries a W -action by functoriality.

Let us call a subset I ⊂ S finitary if the associated standard para-
bolic subgroup WI = 〈I〉 ⊂ W is finite. Given a finitary subset I ⊂ S
denote by RI the invariants in R under WI . Furthermore, if I, J ⊂ S
are finitary denote by RI-Mod-RJ the category of graded (RI , RJ)-
bimodules.

We want to define certain subcategories IBJ ⊂ RI-Mod-RJ for all
pairs of finitary subsets I, J⊂S. Note first that if I, J, K ⊂ S are
finitary and satisfy I ⊃ K ⊂ J then both RI and RJ are graded sub-
rings of RK and hence we may regard RK as an object in RI-Mod-RJ .
Roughly, we obtain the categories IBJ by tensoring all combinations of
such bimodules together and taking direct summands.

More precisely, given two finitary subset I, J ⊂ S we define IBJ to
be the smallest full additive subcategory of RI-Mod-RJ which contains
all objects isomorphic to direct summands of shifts of objects of the
form

RI1 ⊗RJ1 RI2 ⊗RJ2 · · · ⊗RJn−1 RIn

where I = I1 ⊂ J1 ⊃ I2 ⊂ J2 ⊃ · · · ⊂ Jn−1 ⊃ In = J are finitary
subsets of S. We obtain in this way categories of singular Soergel
bimodules.

Given any double coset p ∈ WI \W/WJ we consider the subvariety

IGrJ
p ⊂ V/WI × V/WJ

obtained as the image of the subvariety {(xλ, λ) | x ∈ p, λ ∈ V } of
V × V under the quotient map. The Bruhat order on W descends to
a Bruhat order on WI \W/WJ which we also denote by ≤. We write
IGrJ

≤p (resp. IGrJ
<p) for the union of all IGrJ

q with q ≤ p (resp. q < p).

We may regard any M ∈ RI-Mod-RJ as an RI⊗RJ -module and hence
as a quasi-coherent sheaf on V/WI × V/WJ , which allows us to speak
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6 1. INTRODUCTION

of support of M or m ∈ M . We denote by Γ≤pM (resp. Γ<pM) the
submodule of sections supported on IGrJ

≤p (resp IGrJ
<p).

Our main theorem is the following:

Theorem 1. There is a natural bijection:

WI\W/WJ
∼−→

 isomorphism classes of
indecomposable bimodules in IBJ

(up to shifts in the grading).


More precisely, for every p ∈ WI\W/WJ there exists a unique isomor-
phism class (up to shifts) of indecomposable bimodules M ∈ IBJ whose
support is IGrJ

≤p.

In order to explain why one would be interested in proving such
a theorem we need to introduce the Hecke category. Recall that the
Hecke algebra is the free Z[v, v−1]-module with basis {Hw | w ∈ W}
and multiplication:

HwHs =

{
Hws if ws > w
(v−1 − v)Hw + Hws if ws < w.

The Hecke algebra has a duality involution which sends Hw to H−1
w−1

and v to v−1 and a self-dual Kazhdan-Lusztig basis {Hw | w ∈ W}.
For all finitary I, J ⊂ S we consider the Z[v, v−1]-submodule

IHJ = {h ∈ H | Hsh = hH t = (v + v−1)h for all s ∈ I and t ∈ J}.

The duality involution on H induces an (anti-linear) endomorphism
on each IHJ and each IHJ possesses a standard basis { IHJ

p | p ∈
WI\W/WJ}. If I, J, K ⊂ S are finitary there exists a product

IHJ × JHK → IHK

(f, g) 7→ f ∗J g

which is a certain renormalisation of the product in the Hecke algebra.
It is natural to view this structure as a Z[v, v−1]-linear category which
we call the Hecke category : the objects are finitary subsets I ⊂ S, and
the morphisms from I to J consist of the module IHJ .

For any bimodule M ∈ IBJ and p ∈ WI \W/WJ the subquotient
Γ≤pM/Γ<pM is isomorphic to a finite direct sum of shifts of certain
“standard modules” which may be described explicitly. It is therefore
natural to define a character

ch : IBJ → IHJ

M 7→
∑

hp
IHJ

p

where hp ∈ N[v, v−1] counts the graded multiplicity of the standard
module in the subquotient Γ≤pM/Γ<pM .
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Our second main theorem is that the collection of categories IBJ

for all finitary subsets I, J ⊂ S “categorifies” the Hecke category.1

Theorem 2. If I, J, K ⊂ S are finitary we have a commutative
diagram

IBJ × JBK
−⊗

RJ− //

ch× ch
��

IBK

ch
��

IHJ × JHK
−∗J− // IHK

Moreover, one may choose representatives {IBJ
p | p ∈ WI \W/WJ} for

each isomorphism class of indecomposable bimodules (up to shifts) such
that {ch(IBJ

p )} gives a self-dual basis of IHJ and

ch(IBJ
p ) = IHJ

p +
∑
q≤p

gq,p
IHJ

q for some gq,p ∈ N[v, v−1].

If I = J = ∅ then IHJ is the Hecke algebra and we write B instead
of IBJ . In this case Theorem 1 tells us that the isomorphism classes
of indecomposable objects in B are parametrised, up the shifts, by W
and Theorem 2 tells us that their characters yield a special basis for
the Hecke algebra. This result was obtained by Soergel in [So6] (using
a slightly different definition of B) and formed the principle motivation
for this work. Similar ideas have also been pursued by Dyer in [Dy1]
and [Dy2], and by Fiebig in [Fie1], [Fie2] and [Fie3].

It is natural to ask for a description of the characters of the inde-
composable modules in IBJ . We write Bx for a representative of the
isomorphism class of indecomposable objects parametrised by x ∈ W ,
normalised as in Theorem 2. Soergel has proposed the following:

Conjecture 1 ([So6], Vermutung 1.13). For all x ∈ W we have

ch(Bx) = Hx.

For arbitrary finitary subsets I, J ⊂ S there exists a Kazhdan-
Lusztig basis {IHJ

p} for IHJ . The following relates the objects in the

categories IBJ and B and shows that Soergel’s conjecture implies char-
acter formulae for all indecomposable singular bimodules.

Theorem 3. Let I, J ⊂ S be finitary, p ∈ WI \W/WJ and denote
by p+ the unique element of p of maximal length. Then we have an
isomorphism:

R⊗RI
IBJ

p ⊗RJ R ∼= Bp+ in R-Mod-R.

1The Hecke category is already a category. Thus in order to make this statement
more precise we should equip the collection of categories IBJ together with tensor
product IBJ×JBK → IBK with the structure of a 2-category. We will not need this
formalism and will be happy with a rough idea of what “categorification” means in
this context.
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In particular, if Soergel’s conjecture is true then

ch(IBJ
p ) = IHJ

p .

Let V be a reflection faithful representation of W over an infi-
nite field of positive characteristic. As shown in [So6] it is still pos-
sible to define the category B and one obtains the same classifica-
tion of indecomposable objects2 however Conjecture 1 is not expected
to be true in general. As pointed out in [So4] an understanding of
the characters of the indecomposable bimodules (in particular when
ch(Bx) = Hx) would have important applications in the representation
theory of groups of Lie type in positive characteristic.

Our last result is a combinatorial method by which one may verify
the characters of the indecomposable bimodules in some cases. We
define, based on the W -graph of (W, S), a certain subset σ(W ) ⊂ W
of separated elements and confirm Soergel’s conjecture for x ∈ σ(W ).

Theorem 4. Suppose that x ∈ σ(W ). Then ch(Bw) = Hw.

The proof relies on elementary properties of the basis {ch(Bw)} and
hence works in arbitrary characteristic.

Of course, in order to apply this theorem it is necessary to know
the set σ(W ). The essential ingredient in the calculation of the set
σ(W ) is the W -graph of the Coxeter system (W, S). Unfortunately,
even in simple situations the W -graph can be very complicated and
no general description is known. However, using Fokko du Cloux’s
program Coxeter [dC1] we use a computer to determine the set σ(W )
for low rank, finite Coxeter groups.

The simplest situation is when σ(W ) = W . This occurs in type An

for n ≤ 6. In other types and type An for n ≥ 7 our techniques are
not as effective. In most examples that we have computed σ(W ) is not
the entire Weyl group. However, we are able to confirm the characters
for approximately 99% of all indecomposable bimodules in ranks ≤ 6.
We also believe that the elements x /∈ σ(W ) for which our methods fail
will provide an interesting source of future research.

As a second motivation for studying the categories IBJ we will
describe how, in certain special situations, the categories IBJ appear
as “algebraic models” of certain categories of perverse sheaves. We will
not need the following again, however we believe it is important to have
in mind.

Let G be a connected reductive algebraic group over C equipped
with the classical topology and T ⊂ B ⊂ G a maximal torus and Borel
subgroup respectively. Let W be the Weyl group and S its simple

2We believe the same should be true for the categories IBJ of singular Soergel
bimodules in positive characteristic, but have not yet pursued this. See Perspective
1) at the end of the introduction.
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reflections. For any subset I ⊂ S of simple reflections we let PI denote
the corresponding standard parabolic subgroup.

Let V = Lie T be the Lie algebra of T , a vector space over C which
has an induced linear action of W . The representation of W on V is
reflection faithful and we are therefore in the earlier situation: we write
R for the regular functions on V and obtain full subcategories IBJ of
RI-Mod-RJ for all I, J ⊂ S.

For any pair I, J ⊂ S we let PI × PJ act on G via (p1, p2) · g =
p1gp−1

2 and consider the equivariant derived category Db
PI×PJ

(G) with
coefficients in C as defined in [BL]. If X ⊂ G is stable under PI × PJ

we write X for the equivariant constant sheaf on X, extended by zero
to G. As explained in [So7], for all triples I, J, K ⊂ S there exists a
convolution functor

Db
PI×PJ

(G)×Db
PJ×PK

(G)→ Db
PI×PK

(G)

which we denote (F ,G) 7→ F ∗PJ
G.

For all pairs I, J ⊂ S we define IPJ to be the smallest full additive
category of Db

PI×PJ
(G) which contains all objects isomorphic to direct

summands of shifts of objects of the form

(1) PJ1 ∗PI2
PJ2 ∗PI3

· · · ∗PIn−1
PJn−1

where I = I1 ⊂ J1 ⊃ I2 ⊂ J2 ⊃ · · · ⊂ Jn−1 ⊃ In = J are all subsets of
S and for 1 ≤ i < n we regard PJi

as an object in Db
PIi

×PIi+1
(G).

Given any complex algebraic group H, H-variety X and F ∈
Db

H(X) the equivariant hypercohomology H•
H(F) is a graded module

over H•
H(pt). As H•

PI×PJ
(pt) = RI ⊗ RJ (eg. [Bri], Proposition 1),

given any F ∈ Db
PI×PJ

(G) we may regard H•
PI×PJ

(F) as an object in

RI-Mod-RJ .
Using the formalism of Bernstein-Lunts ([BL], Theorem 12.7.2) one

can show that the equivariant hypercohomology of (1) coincides with
the tensor product

RI1 ⊗RJ1 RI2 ⊗RJ2 · · · ⊗RJn−1 RIn ∈ RI-Mod-RJ .

It follows that H•
PI×PJ

restricts to a functor between IPJ and IBJ .
By combining the arguments in [So5] or [So4] with Theorem 5.4.1 of
this thesis one may show that H•

PI×PJ
is fully-faithful. It follows that

hypercohomology is essentially surjective and we obtain an equivalence
of graded additive categories

H•
PI×PJ

: IPJ ∼−→ IBJ .

It is natural to ask what the classification of indecomposable objects
in IBJ means under this equivalence. Using the equivariant version of
the decomposition theorem ([BL], Theorem 5.3) one may show that
every object in IPJ is isomorphic to a direct sum of shifts of equivari-
ant intersection cohomology complexes. The intersection cohomology



10 1. INTRODUCTION

complexes are indecomposable and are parametrised by the PI×PJ or-
bits on G, which in turn are parametrised by WI\W/WJ . If we denote
by ICp ∈ Db

PI×PJ
(G) the equivariant intersection cohomology complex

corresponding to p ∈ WI\W/WJ one has

H•
PI×PJ

(ICp) ∼= IBJ
p .

In some sense this “explains” Theorem 1 in this context. In [So5] these
techniques are used to prove Conjecture 1 for finite Weyl groups. In
[Hä], Härterich generalises these techniques to establish Conjecture 1
for certain representations of affine Weyl groups.

Perspectives: We finish this introduction with a list of five areas
that we believe deserve further work.

(1) For simplicity we have always assumed that our representation
is over a field of characteristic 0. Instead, we probably should
require the weaker statement:

R is graded free over RI for all finitary subsets I ⊂ S.

The only point where we really use characteristic 0 (rather
than the above condition) is during the proof of Corollary
3.3.5, and another argument would have to be found in this
case.

(2) Given any representation V of W over a field of characteristic
zero such that every reflection t ∈ T fixes a hyperplane, the
definition of the categories of singular Soergel bimodules still
makes sense. However, at certain points the arguments used
to classify the indecomposable objects break down. Somewhat
surprisingly, in [Li2] Libedinsky has show that, if I = J = ∅
and there exists an inclusion of representations V ⊂ Ṽ where

the action of W on Ṽ is reflection faithful, then the indecom-

posable objects defined using V and Ṽ are in bijection and
have the same characters. By Proposition 2.1 in [So6] it is
always possible to find a reflection faithful representation of
W containing the geometric representation as a subrepresen-
tation. Hence one may define the category B by using the
geometric representation. It appears straightforward to ex-
tend Libedinsky’s arguments to the singular situation (that is
I, J 6= ∅), however this should be written down. It should also
be noted that in [Li1] Libedinsky has recently obtained ex-
plicit expressions for all morphisms between “Bott-Samelson”
bimodules in B. It is not clear if his techniques generalise to
the singular situation.

(3) In [Kh] Khovanov has shown how to produce a knot-invariant
(related to the HOMFLYPT polynomial) by taking Hochschild
homology of a complex of Soergel bimodules known as the
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Rouquier complex (see [Ro]). In [WW] Webster and the au-
thor have shown how one may reinterpret some steps in this
construction geometrically. It would be interesting to find ap-
plications of singular Soergel bimodules in this theory.

(4) The set σ(W ) ⊂ W of separated elements (appearing in The-
orem 4 above) has the advantage of being simple to define
and (relatively) easy to compute. However, the disadvantage
is that if x /∈ σ(W ) there is no direct way to obtain more
information on the character of Bx, for any given representa-
tion. Also, brute force calculation of Bx via computer seems
difficult.

In [Wi] we hope to explain (extending results of Soergel
in [So4]) that, after fixing an infinite field k of characteris-
tic not too small (for example char k > 5 is always sufficient)
there is an intimate relationship between intersection cohomol-
ogy complexes of Schubert varieties with coefficients in k, and
Soergel bimodules constructed using a representation over the
same field. In particular, if the graded dimensions of the stalks
of intersection cohomology of a Schubert variety correspond-
ing to x ∈ W over k are different to those in characteristic 0,
then it is not possible to have ch(Bx) = Hx.

Hence one may instead search for examples where the stalks
of intersection cohomology over Z have torsion. Recently, in
[Bra], Braden has made some progress on this problem and
discovered examples of 2-torsion in type A7 and D4. It would
be interesting to combine his techniques with the set σ(W ).
More generally, the importance for representation theory of
understanding intersection cohomology in positive character-
stic and over Z is becoming clear (see [Fie4], [Ju] and [MV]).

(5) Let Φ ⊂ h be a crystallographic root system in a real Euclidean
vector space and Wf ⊂ W the corresponding finite and affine
Weyl groups. Let S ⊂ W be the simple reflections and I ⊂ S
be such that WI = Wf . After choosing a reflection faithful
representation of V one may apply the above construction to
obtain a tensor category IBI . In this case IHI is an Z[v, v−1]-
algebra known as the “adjoint spherical Hecke algebra”. It is
a fact known as the Satake isomorphism (see [Lu1]) that the
spherical Hecke algebra is a deformation of the representation
ring of the adjoint semi-simple group G∨

a with root system
Φ∨ dual to Φ. Using this fact, one may show that if one
normalises the representatives {IBI

p | p ∈ WI \W/WI} as in

Theorem 2 then any tensor product IBI
p ⊗RI

IBI
q is isomorphic

to a direct sum of IBI
r for r ∈ WI \W/WI without shifts. We

therefore obtain a tensor subcategory IBI
0 containing all IBI

p

for p ∈ WI \W/WI . It is natural to expect an equivalence of
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tensor categories
IBI

0
∼= Rep G∨

a

where Rep G∨
a denotes the tensor category of finite dimensional

algebraic representations of G∨
a . Making this precise should

certainly involve [MV]. One would hope to be able to enlarge
IBI

0 to a category ĨBI
0 so as to obtain an equivalence

ĨBI
0
∼= Rep G∨

sc

where G∨
sc is the simply connected algebraic group with root

system Φ∨. A further challenge would be make everything
work over a field of positive characteristic and possibly find a
connection with tilting modules.
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List of important notation

W , S a Coxeter group and its simple reflections 15
T the reflections in W 15
` the length function on W 15
I, J , K, L finitary subsets of S, (i.e. WI , WJ , . . . are finite) 16
WI the standard parabolic subgroup generated by I 16
wI the longest element in WI 16
π(I), π̃(I) two Poincaré polynomials of WI 16
WI\W/WJ the (WI , WJ)-double cosets in W 17
p, q, r elements of WI\W/WJ 17
p+, p− the maximal and minimal elements in p 17
π(p), π̃(p) Poincaré polynomials of p 17
wI,p,J the longest element in WI∩p−Jp−1

−
18

π(I, p, J), Poincaré polynomials of WI∩p−Jp−1
−

18

π̃(I, p, J)
≤ the Bruhat order on WI\W/WJ 18
H the Hecke algebra 22
Hw, Hw a standard and Kazhdan-Lusztig basis element 22
IHJ a hom space in the Hecke category 24
IHJ

p a standard basis element in IHJ 25
IHJ

p a Kazhdan-Lusztig basis element in IHJ 25
IHJ a standard generator of the Hecke category 25
〈·, ·〉 the bilinear form on IHJ 29
V a reflection faithful representation of W 35
ht an equation for V t ⊂ V 35
R the graded ring of regular functions on V 35
RI the WI-invariants in R 35
IRJ

p the standard object indexed by p ∈ WI\W/WJ 36
R(X) the enlarged ring of regular functions 38
IGrJ

p the (twisted) graph of p in V/WI × V/WJ 46
IGrJ

C the union of graphs of all p ∈ C ⊂ WI\W/WJ 46
ΓCM sections of M with support in IGrJ

C 47
ΓpM the stalk of M at p 47
Γ≤p M , Γ≥p M support subquotients of M 47
I∇J

p , ch∇ a nabla module and the nabla character 56
I∆J

p , ch∆ a delta module and the delta character 64
D the duality functor 65
IBJ

BS the category of Bott-Samelson bimodules 67
IBJ the category of singular Soergel bimodules 67
IBJ

p an indecomposable singular Soergel bimodule 76





CHAPTER 2

Coxeter Groups and Hecke Algebras

1. Coxeter groups

In this section we recall standard facts about Coxeter groups and
standard parabolic subgroups, as as well as their Poincaré polynomials
and double cosets. We then introduce translation sequences, which are
a generalisation of reduced expressions.

1.1. Fundamental properties. In this section we recall standard
facts about Coxeter groups. References for this section are [Hu] and
[Bo].

Recall that a Coxeter system (W, S) is a group W together with a
set of distinguished generators S ⊂ W subject only to the relations

(st)m(s,t) = id for all s, t ∈ S

where m : S×S → N∪{∞} is a symmetric function satisfying m(s, s) =
1 and m(s, t) ≥ 2 for all s 6= t ∈ S. The elements of S have order 2
and are called the simple reflections. The reflections consist of the set

T =
⋃

w∈W

wSw−1 ⊂ W.

A reduced expression for w ∈ W is an expression for w in the
elements of S of minimal length. The length of w, `(w), is the length
of a reduced expression for w. If W is finite there is a unique element
of longest length, the longest element w0 ∈ W . One has `(w0w) =
`(w0)− `(w) for all w ∈ W . The length of an element w ∈ W may be
expressed in terms of reflections:

(1.1.1) `(w) = |{t ∈ T | wt < w}| = |{t ∈ T | tw < w}|.

The Bruhat order ≤ on W is the partial order generated by the
relation wt ≤ w if t ∈ T and `(wt) ≤ `(w). Alternatively, x ≤ w if and
only if x may be obtained as a subexpression of a reduced expression
for w.

To the Coxeter system (W, S) one may associate a directed, edge-
labelled graph GW , as follows. Its vertices correspond to the elements
of W and there is a directed edge from x to tx labelled by t for all
x ∈ W and t ∈ T such that x < tx. The graph GW is the Bruhat graph
of W . If X ⊂ W is a subset we denote by GX the full subgraph with
vertices X.

15
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1.2. Parabolic subgroups and double cosets. Given a subset
I ⊂ S we consider the subgroup WI ⊂ W generated by I. This is a
standard parabolic subgroup of W . This is also a Coxeter group with
presentation

(st)m(s,t) = id for all s, t ∈ I.

In this work we will be chiefly concerned with finite standard parabolic
subgroups.

Definition 1.2.1. A subset I ⊂ S is finitary if WI is finite. If
I ⊂ S is finitary we denote by wI ∈ W the longest element of WI . The
Poincaré polynomials of WI are the elements in N[v, v−1] defined by

π̃(I) =
∑

w∈WI

v−2`(w) and π(I) = v`(wI)π̃(I).

Let f 7→ f be the involution of Z[v, v−1] which fixes Z and sends v
to v−1. We will call elements f ∈ Z[v, v−1] satisfying f = f self-dual.
Because `(wIx) = `(wI)−`(x) for all x ∈ WI it follows that π(I) is self-
dual. It will be useful to always define two normalisations of Poincaré
polynomials: π will always be self-dual and π̃ will always lie in N[v−1].

Definition 1.2.2. Given I ⊂ S we define

DI = {w ∈ W | ws > w for all s ∈ I} and ID = (DI)
−1.

If I ⊂ S is finitary we define

DI = {w ∈ W | ws < w for all s ∈ I} and ID = (DI)−1.

The elements of DI and DI (resp. ID and ID) are called the minimal
and maximal left (resp. right) coset representatives.

The terminology is justified by the following proposition.

Proposition 1.2.3. Let I ⊂ S. Every left coset of WI contains
precisely one element of DI and this is the unique element of minimal
length. Furthermore, `(wu) = `(w) + `(u) for all w ∈ DI and u ∈
WI . If I is finitary, then every left coset contains a unique element of
maximal length, this element lies in DI and `(zu) = `(z)− `(u) for all
z ∈ DI and u ∈ WI . Analogous statements hold for right cosets using

ID and ID.

Proof. For the case of minimal elements see Proposition 1.10 of
[Hu] or Proposition 2.2.3 of [Ca]. If WI is finite then the case of
maximal elements follows from this. �

Corollary 1.2.4. If I ⊂ J ⊂ S are finitary then

π̃(J)

π̃(I)
=

∑
w∈WJ∩DI

v−2`(w) ∈ N[v−1].

It is natural to ask if the generalisation of the above proposition is
true for double cosets of two standard parabolic subgroups.
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Definition 1.2.5. Given two subsets I, J ⊂ S we define

IDJ = ID ∩ DJ .

If I and J are finitary we define
IDJ = ID ∩ DJ .

The set IDJ does indeed give minimal distinguished double coset
representatives:

Proposition 1.2.6. Let I, J ⊂ S. Every double coset p = WIxWJ

contains a unique element of IDJ and this is the element of smallest
length in p. If I and J are finitary then p also contains a unique
element of IDJ , and this is the unique element of maximal length.

Proof. For the case of minimal elements see [Ca], Proposition
2.7.3. The case of maximal elements if WI and WJ are finite follows by
similar arguments. �

Definition 1.2.7. Let I, J ⊂ S. We denote the set of (WI , WJ)-
double cosets of W by WI\W/WJ . More generally, if X ⊂ W is a union
of (WI , WJ)-double cosets we write WI\X/WJ for the (WI , WJ)-double
cosets contained in X. Given p ∈ WI \W/WJ we denote by p− the
unique element of minimal length. If I and J are finitary, we denote
by p+ the unique element of maximal length in p. We call p− and
p+ the minimal and maximal double coset representatives respectively.
The Poincaré polynomials of p are the elements in N[v, v−1] defined by

π̃(p) = v2`(p−)
∑
x∈p

v−2`(x) and π(p) = v`(p+)−`(p−)π̃(p).

In will be important in the sequel to be able to describe intersections
of (not necessarily standard) parabolic subgroups. This is the subject
of Kilmoyer’s theorem.

Theorem 1.2.8 (Kilmoyer). Let I, J ⊂ S and p ∈ WI \W/WJ .
Then

WI ∩ p−WJp−1
− = WI∩p−Jp−1

−
.

Proof. See [Ca], Theorem 2.7.4. �

The following theorem is a generalisation of Lemma 1.2.3 to double
cosets.

Theorem 1.2.9 (Howlett). Let I, J ⊂ S and p ∈ WI \W/WJ .
Setting K = I ∩ p−Jp−1

− the map

(DK ∩WI)×WJ → p

(u, v) 7→ up−v

is a bijection satisfying `(up−v) = `(p−) + `(u) + `(v).

Proof. See [Ca], Theorem 2.7.5. �
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The intersection I∩p−Jp−1
− emerges often enough to warrent special

notation.

Definition 1.2.10. Let I, J ⊂ S be finitary, p ∈ WI \W/WJ and
set K = I ∩ p−Jp−1

− . We define π̃(I, p, J) = π̃(K), π(I, p, J) = π(K)
and wI,p,J = wK.

Corollary 1.2.11. Let I, J ⊂ S be finitary and p ∈ WI \W/WJ .
We have the identitities:

`(p+)− `(p−) = `(wI) + `(wJ)− `(wI,p,J)(1.2.1)

π̃(p)π̃(I, p, J) = π̃(I)π̃(J)(1.2.2)

π(p)π(I, p, J) = π(I)π(J)(1.2.3)

π(p) = π(p).(1.2.4)

Proof. The first three statements follow from from Howlett’s the-
orem and Corollary 1.2.4. The last statement follows because π(I),
π(J) and π(I, p, J) are all self-dual and therefore so is π(p). �

Proposition 1.2.12. Let I, J ⊂ S and p ∈ WI\W/WJ . All edges of
the Bruhat graph of W restricted to p ⊂ W are generated by reflections
in WI and WJ . In other words, if x and tx both lie in p then either
t ∈ WI or tx = xt′ for some reflection t′ ∈ WJ .

Proof. We may assume tx < x and write x = up−v as in Theorem
1.2.9. After choosing reduced expressions for u, p− and v we obtain a
reduced expression for x by concatenation. By the exchange condition
([Hu], Theorem 5.8 or [Bo], IV, Proposition 4), we may obtain an
expression for tx by omitting a reflection from a reduced expression
for x. However, using our reduced expression above, we must omit a
reflection from either u or v in order to stay in p, and the proposition
follows. �

Recall that W becomes a poset when equipped with the Bruhat
order.

Definition 1.2.13. Given finitary I, J ⊂ S the Bruhat order on
WI\W/WJ (which we also denote by ≤) is the partial order defined by
setting p ≤ q if p− ≤ q− in W . We say that a subset C ⊂ WI\W/WJ is
downwardly (resp. upwardly) closed if p ∈ C and q ≤ p (resp. q ≥ p)
implies q ∈ C.

Given a poset (X,≤) and x ∈ X we will often abuse notation and
write {≤ x} (resp. {< x}) for the set of elements in X less (resp.
strictly less) than x, and similarly for {≥x} and {>x}.

Let φ : X → Y be a map between the underlying sets of two posets
(X,≤) and (Y,≤). We call φ a morphism of posets if x1 ≤ x2 implies
that φ(x1) ≤ φ(x2). If φ is a morphism of posets we call φ ≤-strict if,
whenever φ(x) ≤ y for x ∈ X and y ∈ Y there exists x′ ∈ φ−1(y) such
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that x ≤ x′. Similarly, φ is ≥-strict if, whenever y ≤ φ(x) there exists
x′ ∈ φ−1(y) such that x′ ≤ x. If φ is ≤-strict (resp. ≥-strict) then
φ−1({≤ y}) (resp. φ−1({≥ y})) is equal to {x | x ≤ x′ for some x′ ∈
φ−1(y)} (resp. {x | x ≥ x′ for some x′ ∈ φ−1(y)}. We call φ strict, if it
is both ≤-strict and ≥-strict.

Proposition 1.2.14. Let I ⊂ K and J ⊂ L be subsets of S. The
quotient map

qu : WI\W/WJ → WK\W/WL

is a strict morphism of posets.

Proof. In order to show that qu is a morphism of posets we need to
show that if x ≤ y in W and p and q are the (WK , WL)-double cosets
containing x and y respectively, then p− ≤ q−. By choosing simple
reflections in WI and WJ which reduce y, and repeatedly applying the
fact that x ≤ y implies that either x ≤ ys or xs ≤ ys for s ∈ S and
similarly on the left ([Hu], Proposition 5.9) we see that x′ ≤ q− for
some x′ ∈ p and hence p− ≤ q−. Thus qu is a morphism of posets.
Lastly, if qu(p) ≤ q for some p ∈ WI \W/WJ and q ∈ WK \W/WL

then qu(p)− ≤ q−. By multiplying by suitable elements s ∈ K on the
left and t ∈ L on the right and using the previous fact, we see that
p− ≤ w for some w ∈ q and so p ≤ p′ for some p′ ∈ qu−1(q). Hence qu
is ≤-strict. Similar arguments show that qu is ≥-strict. �

Let qu be as in the proposition and choose q ∈ WK \W/WL. The
set qu−1(q) always has a maximal element p. Because qu is strict it
follows that

qu−1({≤q}) = {≤p} and qu−1({≥q}) = {≥p}.
The following fact will be needed in in the sequel.

Lemma 1.2.15. Let I ⊂ K and J ⊂ L be finitary subsets of S. If
p ∈ WI\W/WJ and q ∈ WK\W/WL are such that p ⊂ q then

π(K, q, L)

π(I, p, J)
∈ N[v, v−1].

Proof. We may assume that either I = K and J = L. If I = K
then, by imitating the arguments used in the proof of [Ca], Lemma
2.7.1 one may show that I ∩ p−Jp−1

− ⊂ K ∩ q−Lq−1
− and the lemma

follows in this case by Corollary 1.2.4. The case J = L follows by
inversion and the fact that two conjugate subsets of S have the same
Poincaré polynomials. �

We will need the following proposition when we come to discuss
Demazure operators.

Proposition 1.2.16. Let p be a double coset and x ∈ p. We have

`(p+)− `(x) = |{t ∈ T | x < tx ∈ p}|.
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Proof. Let u ∈ WI and v ∈ WJ and set y = uxv ∈ p. We claim
that for all t ∈ T ,

(1.2.5) x > tx /∈ p⇔ y > (utu−1)y /∈ p.

In order to verify this claim it is enough to show that, if x ∈ p

x > tx /∈ p, s ∈ WJ ⇒ xs > txs

x > tx /∈ p, s ∈ WI ⇒ sx > (sts)sx.

For the first statement note that either xs > txs or xs < txs. However,
as x > tx the second possibility would imply x = txs by Deodhar’s
“Property Z” (alternatively this follows from [Hu], Proposition 5.9)
which contradicts tx /∈ p. The second statement follows similarly. Thus
we have verified (1.2.5). It is also immediate that, for all t ∈ T ,

tx ∈ p⇔ utu−1y ∈ p.

Now, setting y = p+ and using the above facts together with the max-
imality of p+ ∈ p we follow

`(p+)− `(y+) = |{t ∈ T | p+ > tp+}| − |{t ∈ T | x > tx}|
= |{t ∈ T | p+ > tp+ ∈ p}| − |{t ∈ T | x > tx ∈ p}|
= |{t ∈ T | x < tx ∈ p}|. �

1.3. Translation sequences. When studying a Coxeter group W
an important role is played by expressions. Their importance becomes
particularly obvious when studying the Bruhat order or Hecke algebra.
In this work we are interested in the set of double cosets WI \W/WJ

for I, J ⊂ S and thus would like an analogue of reduced expressions.
These are the “translation sequences” of the title.

As a motivation, consider a reduced expression st . . . u. Given a
simple reflection s, we will write 〈s〉 for the parabolic subgroup which
it generates. It is natural to consider st . . . u as giving a sequence of
cosets:

{id} ⊂ 〈s〉 ⊃ {s} ⊂ s〈t〉 ⊃ {st} ⊂ · · · ⊃ {st . . . u}.
This will be our model for a “translation sequence”: roughly speaking it
is a sequence of double cosets, in which an inclusion relation is satisfied
at every step.

In contrast to the one-sided cosets, an equality between two dou-
ble cosets WIxWJ and WKyWL does not imply that WI = WK or
WJ = WL. For our purposes, it will be necessary to keep track of the
groups WI and WJ and not just their double cosets. This leads to some
complicated notation.

We begin by defining what a step in a translation sequence may
look like:

Definition 1.3.1. Let I, J, K, L ⊂ S be finitary, p ∈ WI \W/WJ

and q ∈ WK\W/WL. We call
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(1) (K, q, L) a shrinking of (I, p, J) if I ⊃ K, J ⊃ L and p ⊃ q.
(2) (K, q, L) a expansion of (I, p, J) if I ⊂ K, J ⊂ L and p ⊂ q.

A shrinking is reduced if the maximal elements of p and q are equal.
The expansion is reduced if the minimal elements of p and q are equal
and

I ∩ p−Jp−1
− = K ∩ q−Lq−1

− .

We can now define a translation sequence:

Definition 1.3.2. A translation sequence is a triple (Ii, pi, Ji)0≤i≤n

where, for all 0 ≤ i ≤ n, Ii, Ji ⊂ S are finitary and pi ∈ WIi
\W/WJi

.
The sequence is subject to the following conditions:

(1) I0 = J0 and id ∈ p0;
(2) (Ii+1, pi+1, Ji+1) is either a shrinking or expansion of (Ii, pi, Ji)

for 0 ≤ i < n, .

The translation sequence is reduced if each shrinking and expansion
is reduced. A left translation sequence (resp. right translation se-
quence) is a translation sequence (Ii, pi, Ji)0≤i≤n in which Ji = Ji+1

(resp. Ii = Ii+1) for all 0 ≤ i < n. The end-point of a translation
sequence (Ii, pi, Ji)0≤i≤n is the triple (In, pn, Jn).

Example 1.3.3.

(1) We have described translation sequences as a generalisation of
an expression st . . . u for an element w ∈ W . Given such an
expression we obtain a right translation sequence (with slight
abuse of notation):

(∅, id, ∅), (∅, 〈s〉, s), (∅, s, ∅), (∅, s〈t〉, t), (∅, st, ∅), etc.
This translation sequence has endpoint (∅, w, ∅) and is reduced
if and only if st . . . u is a reduced expression.

(2) More generally, a right translation sequence (I, pi, Ji) with I =
∅ gives a path in the Coxeter complex of (W, S) (see [Bro]). It
would be nice to have a geometric interpretation for translation
sequences in general.

The existence of reduced expressions in a Coxeter group is a triv-
iality. The following proposition (which is important in what follows)
show that reduced translation sequences always exist.

Proposition 1.3.4. Let I, J ⊂ S be finitary and p ∈ WI \W/WJ .
Then there exists a reduced right translation sequence (I, pi, Ji)0≤i≤n

with end-point (I, p, J).

Proof. Assume that one of the following is true:

(1) There exists K ) J , necessarily finitary, such that p+ remains
the maximal element in q = WIpWK ;

(2) There exists K ( J such that, setting q = WIp−WK we have
I ∩ p−Jp−1

− = I ∩ p−Kp−1
− .
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In case 1), (I, p, J) is a reduced shrinking of (I, q, K) and in case 2),
p− remains the minimal element in q and thus (I, p, J) is a reduced
expansion of (I, q, K).

Thus, by induction, we may assume that neither 1) nor 2) is true.
We claim that in this case necessarily I = J and p = WIWJ = WI

which implies the proposition.
As 2) is not true, for all t ∈ J there exists s ∈ I with sp− = p−t.

Thus we may write p+ = up− for some u ∈ WI . Now assume for
contradiction that p−t < p− for some t ∈ S. We cannot have up− <
up−t as otherwise p−t < p− < up− < up−t would all be in the same
left WI-coset. Hence up− > up−t, contradicting the fact that 1) is not
possible. We conclude that p− = id. Hence I ⊃ J , p+ = wI and I = J
by using 1) again. �

2. The Hecke algebra and category

We begin by recalling the Hecke algebra, Kazhdan-Lusztig basis
and a certain canonical bilinear form. We then introduce the Hecke
category (a certain relative version of the Hecke algebra) and define
its standard basis, standard generators, Kazhdan-Lusztig basis and
bilinear form.

2.1. The Hecke algebra and Kazhdan-Lusztig basis. Let (W, S)
be a Coxeter system. Recall that the Hecke algebra H is the free
Z[v, v−1]-module with basis {Hw | w ∈ W} and multiplication

(2.1.1) HsHw =

{
Hsw if sw > w
(v−1 − v)Hw + Hsw if sw < w.

We call {Hw} the standard basis. Each Hw is invertible and there is
an involution on H which sends Hw to H−1

w−1 and v to v−1. We will
call elements fixed by this involution self-dual. One has the following
fundamental theorem of Kazhdan and Lusztig ([KL1]):

Theorem 2.1.1. There exists a unique basis {Hw | w ∈ W} such
that:

(1) Each Hw is self-dual.
(2) One has Hw =

∑
x≤w hx,wHx with hw,w = 1 and hx,w ∈ vZ[v].

Proof. The original proof is in [KL1]. In [So3] there is a simpler
proof (which uses the above notation). �

We call {Hw} the Kazhdan-Lusztig basis and the coefficients hx,y

the Kazhdan-Lusztig polynomials.1

1It should be noted that the hx,y are not exactly the Kazhdan-Lusztig polyno-
mials in the literature. One may write v`(x)−`(y)hx,y = Px,y(v−2) with Px,y ∈ Z[q].
Px,y is the “real” Kazhdan-Lusztig polynomial.
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Clearly H id = Hid and a calculation shows that Hs = Hs + Hid,
which, together with (2.1.1), yields

(2.1.2) HsHw =

{
vHw + Hsw if sw > w
v−1Hw + Hsw if sw < w.

If x < y, write µ(x, y) for the coefficient of v in hx,y. One has the
following multiplication formula ([So3], Proposition 2.8):

(2.1.3) HsHw =

{
(v + v−1)Hw if sw < w
Hsw +

∑
x<w;sx<x µ(x, w)Hx if sw > w

If sw < w one may expand HsHw in (2.1.2) and (2.1.3) to conclude
that hsx,w = vhx,w if xs < x. It follows that if I ⊂ S if finitary and wI

denotes the longest element in WI we have

(2.1.4) HwI
=

∑
x∈WI

v`(wI)−`(x)Hx.

If s ∈ WI is a simple reflection one has

HsHwI
= HsHwI

− vHidHwI
= v−1HwI

.

From which it follows that

(2.1.5) HxHwI
= v−`(x)HwI

.

If K ⊂ I then, combining (2.1.4) and (2.1.5) we obtain

(2.1.6) HwK
HwI

= π(K)HwI
.

There is a Z[v, v−1]-linear anti-involution i : H → H sending Hx to
Hx−1 . Following [Lu2] we define a bilinear form:

H × H → Z[v, v−1]

(f, g) 7→ 〈f, g〉 = coefficient of Hid in fi(g).

The form has the following alternative description:

Lemma 2.1.2. We have 〈Hx, Hy〉 = δx,y for all x, y ∈ W .

Proof. If x = id or lies in S then the formula is immediate from
(2.1.1). We may now induct on the length of x. After having chosen
s ∈ S with xs < x we have 〈Hx, Hy〉 = 〈Hxs, HyHs〉 = δxs,ys = δx,y by
induction and (2.1.1) again. �

2.2. The Hecke category. We want to define a certain relative
version of the Hecke algebra associated to all pairs of finitary subsets
I, J ⊂ S. The most natural way to define this is as an “Z[v, v−1]-
linear category”. Recall that, given a ring R, an R-linear category is
a category in which each space of morphisms has the structure of an
R-module and composition is R-bilinear.
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For all pairs of finitary subsets I, J ⊂ S define:
IH = HwI

H
HJ = HHwJ

IHJ = IH ∩ HJ

There is no natural multiplication on IHJ . However, given another
finitary subset K ⊂ S we may define a multiplication as follows

IHJ × JHK → IHK

(h1, h2) 7→ h1 ∗J h2 =
1

π(J)
h1h2.

This well defined by (2.1.6). If J = ∅ we write ∗ instead of ∗∅. The
existence of this “partial multiplication” is formalised by the following
definition.

Definition 2.2.1. The Hecke category is the Z[v, v−1]-linear cat-
egory defined as follows. The objects are finitary subsets I ⊂ S. The
morphisms between two objects I and J consists of the module IHJ .
Composition IHJ × JHK → IHK is given by ∗J .

This does indeed define a Z[v, v−1]-linear category. The only point
that may not yet be obvious is the existence of the identity endomor-
phism. However this will be become clear in the discussion below.

Remark 2.2.2. The Hecke category unifies several different objects:

(1) The endomorphism ring of ∅ ⊂ S is the Hecke algebra.
(2) For any finitary subset I ⊂ S, Hom(∅, I) is a left module over

End(∅) = H. This is an example of a “parabolic Hecke mod-
ule” introduced by Deodhar in [Deo].

(3) If W̃ is an affine Weyl group, W ⊂ W̃ is the finite Weyl
group, and I ⊂ S corresponds to all simple reflections in W
then End(I) is the (adjoint) “spherical Hecke algebra” (see e.g.
[Lu1]).

Our main goal for the rest of the section is to define a basis for IHJ

for all finitary subsets I, J ⊂ S and analyse the action of “standard
generators” on this basis.

Until Proposition 2.2.4 fix I, J ⊂ S finitary. We start with a lemma
which helps us to decide if an element h ∈ H belongs to IHJ .

Lemma 2.2.3. Let h =
∑

ayHy ∈ H. The following are equivalent:

(1) h ∈ IH
(2) HwI

h = π(WI)h
(3) Hsh = (v + v−1)h for all s ∈ I.
(4) For all y ∈ W

asy = vay

if s ∈ WI is a simple reflection and sy < y.



2. THE HECKE ALGEBRA AND CATEGORY 25

The analogous “right handed” statements hold for HJ

Proof. Straightforward, using (2.1.6) and Proposition 1.2.3. �

In particular, we conclude that h =
∑

ayHy is in IHJ if and only
if, for all y ∈ W , asy = vay and ayt = vay for all s ∈ I and t ∈ J such
that sy < y and yt < y.

This shows how to find a basis for IHJ as a Z[v, v−1]-module.
Namely, for all p ∈ WI\W/WJ define

IHJ
p =

∑
x∈p

v`(p+)−`(x)Hx.

It follows that, if h =
∑

ayHy is in IHJ then

(2.2.1) h =
∑

p∈WI\W/WJ

ap+

IHJ
p .

The set { IHJ
p | p ∈ WI \W/WJ} is clearly linearly independent over

Z[v, v−1] and we conclude that they form a basis, which we call the
standard basis of IHJ .

Using Lemma 2.2.3 and (2.1.3) we see that Hy ∈ IHJ if and only if
y is maximal in its (WI , WJ)-double coset. In general, if p ∈ WI\W/WJ

we define
IHJ

p = Hp+
.

We have
IHJ

p = IHJ
p +

∑
q<p

hq+,p+

IHJ
q .

It follows that {IHJ
p | p ∈ WI \W/WJ} also forms a Z[v, v−1] basis for

IHJ . We will refer to this as the Kazhdan-Lusztig basis.
For all finitary subsets I, J ⊂ S satisfying I ⊂ J or J ⊂ I we define

IHJ = IHJ
p where p = WIidWJ .

We call call elements of the form IHJ ∈ IHJ standard generators. The
standard generators are the analogues of the elements Hs ∈ H and we
will see below that the set of standard generators generate the Hecke
category, which justifies the terminology. The following proposition
describes the action of the standard generators on the standard basis.

Proposition 2.2.4. Let I, J, K ⊂ S be finitary and assume J ⊂ K
or J ⊃ K. The action of JHK on the basis { IHJ

p | p ∈ WI\W/WJ} is
as follows:

(1) If J ⊃ K then

IHJ
p ∗J JHK =

∑
q∈WI\p/WK

v`(p+)−`(q+) IHJ
q .
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(2) If J ⊂ K then

IHJ
p ∗J JHK = v`(q−)−`(p−)π(I, q, K)

π(I, p, J)
IHK

q

where q = WIpWK is the (WI , WK)-coset containing p.

Before we prove the proposition we need a lemma.

Lemma 2.2.5. Let I, J ⊂ S be finitary, x ∈ W and p = WIxWJ .
Then

IH∅ ∗Hx ∗ ∅HJ = v`(p−)−`(x)π(I, p, J) IHJ
p .

Proof. By Howlett’s Theorem (1.2.9) we may write x = up−v
with u ∈ WI , v ∈ WJ and `(x) = `(u) + `(p−) + `(v). By (2.1.5) we
have:

IH∅ ∗Hx ∗ ∅HJ = v`(p−)−`(x) IH∅ ∗Hp− ∗ ∅HJ

Thus we will be finished if we can show that

IH∅ ∗Hp− ∗ ∅HJ = π(I, p, J) IHJ
p .

We write K = I ∩ p−Jp−1
− so that π(I, p, J) = π(K). If s ∈ K then

sp− = p−s′ for some p′ ∈ J and therefore

(2.2.2) HwK
Hp− = Hp−HwK′

where K ′ = p−1
− Kp−. Because K and K ′ are conjugate π(K) = π(K ′).

We define N ∈ H by

N = v`(wI)−`(wK)
∑

u∈DK∩WI

v−`(u)Hu

and calculate

IH∅ ∗Hp− ∗ ∅HJ = NHwK
Hp−HwJ

(Proposition 1.2.3)

= NHp−HwK′HwJ
(2.2.2)

= π(K)NHp−HwJ
(2.1.6)

= π(K)va
∑
x∈p

v−`(x)Hx (Howlett’s theorem)

= π(K) IHJ
p

where the last line follows because

a = `(wI)− `(wK) + `(wJ) + `(p−) = `(p+)

by Corollary 1.2.11. �

Proof of Proposition 2.2.4. Statement (1) follows by (2.1.6)
and (2.2.1). We now turn to (2). Let us expand

P = IH∅ ∗Hp− ∗ ∅HJ ∗J JHK
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in two different ways. As ∅HJ ∗ JHK = ∅HK by (2.1.6) we obtain,
using Lemma 2.2.5:

P = IH∅ ∗Hp− ∗ ∅HK = v`(q−)−`(p−)π(I, q, K) IHK
q .

We also have (again using Lemma 2.2.5):

P = π(I, p, J) IHJ
p ∗J JHK .

We follow that

(2.2.3) IHJ
p ∗J JHK = v`(q−)−`(p−)π(I, q, K)

π(I, p, J)
IHK

q

By Corollary 1.2.15 and the fact that H is free as a Z[v, v−1]-module.
�

Given an element h ∈ IHJ we may write h =
∑

λp
IHJ

p . We define
the support of h to be the finite set

supp h = {p ∈ WI\W/WJ | λp 6= 0}.
A second corollary of the above multiplication formulas is a description
of multiplication by a standard generator on the support.

Corollary 2.2.6. Let I, J, K ⊂ S be finitary with J ⊂ K and let

qu : WI\W/WJ → WI\W/WK

be the quotient map.

(1) If h ∈ IHJ then

supp(h ∗J JHK) ⊂ qu(supp h).

(2) If h ∈ IHK then

supp(h ∗K KHJ) ⊂ qu−1(supp h).

Recall that in Subsection 1.3 we introduced translation sequences
as a generalisation of reduced expression. We state a proposition,
analysing a product associated with a translation sequence.

Proposition 2.2.7. Let (I, pi, Ji)0≤i≤n be a right reduced transla-
tion sequence with end-point (I, p, J). Then

IHJ0 ∗J0

J0HJ1 ∗J1 · · · ∗Jn−1

Jn−1HJn = IHJ
p +

∑
q<p

λq
IHJ

q .

Before we prove this proposition, we show how it may be used to
show that the standard generators generate the Hecke category (justi-
fying the terminology). We first define what this means.

Let R be a ring and C be an R-linear category. Suppose we are
given a subset XAB ⊂ Hom(A, B) for all pairs of objects A, B ∈ C. We
define the span of the collection {XAB} to be the smallest collection of
R-submodules {YAB ⊂ Hom(A, B)} such that:

(1) XAB ⊂ YAB for all A, B ∈ C,
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(2) The collection {YAB} is closed under composition in C.
We say that {XAB} generates C if the span of {XAB} consists of
Hom(A, B) for all A, B ∈ C. Less formally, one may refer to the span of
any set of morphisms in C and ask whether they generate the category.

Corollary 2.2.8. The standard generators IHJ for finitary I, J ⊂
S with either I ⊂ J or I ⊃ J generate the Hecke category.

Proof. By Proposition 1.3.4, for every p ∈ WI \W/WJ there ex-
ists a right reduced translation sequence (I, pi, Ji)0≤i≤n with end-point
(I, p, J). For each p, choose such a translation sequence and consider
the product

Pp = IHJ0 ∗J0

J0HJ1 ∗J1 · · · ∗Jn−1

Jn−1HJn .

By the above proposition, after choosing a total ordering on WI\W/WJ

compatible with the Bruhat order, the matrix relating the standard
basis { IHJ

p } and the elements {Pp} is uni-triangular. In particular,

the set {Pp} spans IHJ as a Z[v, v−1]-module. The corollary then
follows. �

Remark 2.2.9. It is natural to ask what relations the arrows IHJ

satisfy. We have not looked into this.

Proof. We will prove the proposition via induction on n, with the
case n = 0 being trivial. For 0 ≤ k ≤ n let us denote by Pk the partial
product:

Pk = IHJ0 ∗J0

J0HJ1 ∗J1 · · · ∗Jk−1

Jk−1HJk .

By induction we have:

(1) supp(Pn−1) ⊂ {p | p ≤ pn−1};
(2) the coefficient of IHJn−1

pn−1
in Pn−1 is 1.

There are two cases to consider:
Case 1: Jn−1 ⊃ Jn: As (I, pn, Jn) is a reduced shrinking of (I, pn−1, Jn−1),

pn is the maximal (WI , WJn)-double coset in pn−1. It follows from
Proposition 2.2.4 that the coefficient of IHJn

pn
is 1 and, if

qu : WI\W/WJn → WI\W/WJn−1

denotes the quotient map, then supp(Pn) ⊂ qu−1({≤ pn−1}) = {≤ pn}
by Corollary 2.2.6 and the fact that qu is strict.

Case 2: Jn−1 ⊂ Jn: Let

qu : WI\W/WJn−1 → WI\W/WJn

denote the quotient map. As (I, pn, Jn) is a reduced expansion of
(I, pn−1, Jn−1), π(I, pn−1, Jn−1) = π(I, pn, Jn) and pn−1 is minimal in
qu−1(pn). Hence the coefficient of IHJn

pn
is 1 by Proposition 2.2.4 and

supp(Pn) ⊂ qu(supp Pn−1) ⊂ {≤ pn} as qu is a map of posets. �
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In the previous subsection we defined a bilinear form on H. We now
generalise this construction and define a bilinear form on each IHJ for
I, J ⊂ S finitary. Recall that i : H → H denotes the Z[v, v−1]-linear
anti-involution sending Hx to Hx−1 . As HwI

and HwJ
are fixed by i it

follows that i restricts to an isomorphism of Z[v, v−1]-modules

i : IHJ → JHI .

We define
IHJ × IHJ → Z[v, v−1]

(f, g) 7→ 〈f, g〉 = coefficient of Hid in f ∗J i(g).

We do not include reference to I and J in the notation, and hope that
this will not lead to confusion. It follows from the definition that if
I, J, K ⊂ S are finitary and f ∈ IHJ , g ∈ JHK and h ∈ IHK then

(2.2.4) 〈f ∗J g, h〉 = 〈f, h ∗K i(g)〉.
The following lemma describes the bilinear form on the standard basis
of IHJ .

Lemma 2.2.10. Let I, J ⊂ S be finitary. For all p, q ∈ WI \W/WJ

we have

〈 IHJ
p , IHJ

q 〉 = v`(p+)−`(p−) π(p)

π(J)
δp,q.

Proof. Let f, g ∈ IHJ and write f̃ , g̃ for the elements f and g
regarded as elements of H. It is clear from the definition that

〈f, g〉 =
1

π(J)
〈f̃ , g̃〉.

where the second expression is the bilinear form calulated in H. We
may then calculate using Lemma 2.1. If p 6= q then 〈 IHJ

p , IHJ
q 〉 = 0.

If p = q we have

〈 IHJ
p , IHJ

q 〉 =
1

π(J)

∑
x∈p

v2(`(p+)−`(x)) = v`(p+)−`(p−) π(p)

π(J)
. �





CHAPTER 3

Singular Soergel Bimodules

In this chapter we study singular Soergel bimodules. The main
goals are Theorems 5.4.2 and 5.5.1 which classify the indecomposable
singular Soergel bimodules and show that they provide a categorifica-
tion of the Hecke category.

In order to describe the contents of this chapter in more detail we
briefly recall the definition of the categories IBJ of singular Soergel bi-
modules already given in the introduction. Let R be the graded algebra
of regular functions on a reflection faithful representation V of W and
for a finitary subset I ⊂ S let RI denote the subalgebra of invariants
under WI . Given two finitary subsets I, J ⊂ S let RI-Mod-RJ de-
note the category of graded (RI , RJ)-bimodules. For any pair I, J ⊂ S
of finitary subsets we define the categories IBJ of singular Soergel bi-
modules to be the smallest full additive subcategory of RI-Mod-RJ

which contains all modules isomorphic to direct summands of shifts of
bimodules of the form

RI1 ⊗RJ1 RI2 ⊗RJ2 · · · ⊗RJn−1 RIn

where I = I1 ⊂ J1 ⊃ I2 ⊂ · · · ⊂ Jn−1 ⊃ In = J are all finitary subsets
of S.

Given any module M ∈ RI-Mod-RJ and an enumeration of the
elements in WI\W/WJ compatible with the Bruhat order one obtains
two natural filtrations of M

· · · ⊂ ΓC(i−1)M ⊂ ΓC(i)M ⊂ ΓC(i+1)M ⊂ · · ·
· · · ⊃ ΓČ(i−1)M ⊃ ΓČ(i)M ⊃ ΓČ(i+1)M ⊃ · · ·

by considering M as a quasi-coherent sheaf on V/WI × V/WJ . The
crucial fact is that, if M ∈ IBJ , both filtrations are exhaustive and the
subquotients are isomorphic to direct sums of shifted standard modules,
which are certain bimodules in RI-Mod-RJ which may be described
explicitly.

In order to prove this fact we define objects with nabla flags and
objects with delta flags as those objects for which the subquotients in
the first or second filtration respectively are isomorphic to direct sums
of shifts of standard modules. We then show that these subcategories
are preserved by the functors of restriction and extension of scalars,
which we renormalise and rename translation functors. Given an object
with a nabla or delta flag it is natural to define its nabla or delta

31
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character in the Hecke category by counting the graded multiplicities
of standard modules in the subquotients of the above filtrations. It
turns out that one may describe the effect of translation functors on
the character in terms of multiplication with a standard generator in
the Hecke category.

By the inductive definition of the objects in IBJ it follows that
they they have both a nabla and a delta flag. This may be exploited
to describe Hom(M, B) and Hom(B, M) when B is a Soergel bimodule
and M has a delta or nabla flag respectively. The classification of the
indecomposable objects in IBJ is then straightforward.

Given the classification of indecomposable objects in IBJ it is nat-
ural to attempt to describe their character in the Hecke category. In
case I = J = ∅, Soergel has conjectured that the character of an (ap-
propriately shifted) indecomposable module parametrised by w ∈ W is
given by the Kazhdan-Lusztig basis element Hw. We show that if this
conjecture is true then the characters of all indecomposable singular
Soergel bimodules are given by Kazhdan-Lusztig basis elements.

The structure of this chapter is as follows. In Section 1 we introduce
basic notation. In Section 2 we introduce the standard modules and
begin to study the effect of restriction and extension of scalars on them.
In order to complete the description of extension we need to construct
certain filtrations, which we do in Section 3 using Demazure operators.
In Section 4 we introduce objects with nabla and delta flags, define
their characters and show that these subcategories are preserved by
the translation functors. In Section 5 we complete the classification,
recall Soergel’s conjecture and show that it implies character formulae
for all indecomposable singular Soergel bimodules.

1. Bimodules and homomorphisms

Fix a field k of characteristic 0. We consider rings A satisfying

A = ⊕i≥0A
i is a finitely generated, positively graded(1.0.5)

commutative ring with A0 = k.

We denote by A-Mod and Mod-A the category of graded left and
right A-modules. All tensor products are assumed to take place over
k, unless otherwise specified. If A1 and A2 are two rings satisfying
(1.0.5) we write A1-Mod-A2 for the category of (A1, A2)-bimodules,
upon which the left and right action of k agrees. As all rings are
assumed commutative we have an equivalence between A1-Mod-A2 and
A1 ⊗ A2-Mod. We generally prefer to work in A1-Mod-A2, but will
occasionally switch to A1 ⊗ A2-Mod when convenient.

Given a graded module M = ⊕M i we define the shifted module
M [n] by (M [n])i = Mn+i. The endomorphism ring of any finitely
generated object in A-Mod, Mod-A or A1-Mod-A2 is finite dimensional
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and hence any finitely generated module satisfies Krull-Schmidt (for
example, by adapting the proof in [Pie]).

Given a Laurent polynomial with positive coefficients

P =
∑

aiv
i ∈ N[v, v−1]

and an object M in A-Mod, Mod-A or A1-Mod-A2, we define

P ·M =
⊕

M [i]⊕ai .

If P, Q ∈ N[v, v−1] and M and N are finitely generated modules such
that

P ·M ∼= PQ ·N
we may “cancel P” and conclude (using Krull-Schmidt) that

M ∼= Q ·N.

This will prove to be a useful notational convenience.
Given two modules M, N ∈ A1-Mod-A2 a morphism φ : M → N of

(ungraded) (A1, A2)-bimodules is of degree i if φ(Mm) ⊂ φ(Nm+i) for
all m ∈ Z. We denote by Hom(M, N)i the space of all morphisms of
degree i and

Hom(M, N) =
⊕
i∈Z

Hom(M, N)i.

We make Hom(M, N) into an object of A-Mod-B by defining an action
of a ∈ A and b ∈ B on f ∈ Hom(M, N) via

(afb)(m) = f(amb) = af(m)b

for all m ∈ M . If M and N are objects in A-Mod we similarly define
HomA(M, N) ∈ A-Mod. (We will only omit the subscript for mor-
phisms of bimodules but will sometimes write HomA1−A2(M, N) if the
context is not clear. We never use Hom(M, N) to denote external (i.e.
degree 0) homomorphisms.)

One may check that, if P, Q ∈ N[v, v−1], then

Hom(P ·M, Q ·N) ∼= PQ · Hom(M, N).

where P 7→ P denotes the involution on N[v, v−1] sending v to v−1.
In the sequel we will need various natural isomorphisms between

homomorphism spaces, which we recall here. Let A1, A2 and A3 be
three rings satisfying (1.0.5). Let Mij ∈ Ai-Mod-Aj for i, j ∈ {1, 2, 3}.
In A1-Mod-A3 one has isomorphisms

HomA1−A3(M12 ⊗A2 M23, M13)
∼= HomA1−A2(M12, HomA3(M23, M13))(1.0.6)
∼= HomA2−A3(M23, HomA1(M12, M13))(1.0.7)
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because all three modules describe the same subset of maps M12 ×
M23 → M13. For similar reasons, if N ∈ A1-Mod one has an isomor-
phism in A1-Mod,

HomA1(M12 ⊗A2 M23, N) ∼= HomA2(M23, HomA1(M12, N)).(1.0.8)

Furthermore, this is an isomorphism in A1 ⊗ A3-Mod if both sides are
made into A1 ⊗ A3-modules in the only natural way possible.

If M32 is graded free of finite rank as a right A2-module one has an
isomorphism

(1.0.9) HomA2(M32, M12) ∼= M12 ⊗A2 HomA2(M32, A2)

in A1-Mod-A3. Indeed, there is a natural map from the right hand to
the left hand side, which is an isomorphism under the above assump-
tions. (The structure of both sides as an object in A1-Mod-A3 is again
the natural one).

2. Invariants, graphs and standard modules

In this section we introduce standard modules, which are the build-
ing blocks of Soergel bimodules. Due to the inductive definition of
Soergel bimodules, it will be necessary to be able to precisely describe
the effect of extension and restriction of scalars on standard modules.
Restriction turns out to be straightforward (Lemma 2.2.3). Extension
of scalars is more complicated, and we first need to define certain aux-
illary (R,R)-bimodules R(p).

The structure is as follows. In Section 2.1 we define what it means
for a representation to be reflection faithful and recall some facts about
invariant subrings. In the Section 2.2 we define standard objects and
analyse the effect of restriction of scalars on them. In Section 2.3 we
define the bimodules R(p) and in Section 2.4 we use them to describe
extension of scalars. In Section 2.5 we introduce the notion of support,
which will be essential in what follows.

2.1. Reflection faithful representations and invariants. Let
(W, S) be a finite Coxeter system and recall that we denote by

T =
⋃

w∈W

wSw−1

the reflections in W . A reflection faithful representation of W is a finite
dimensional representation V of W such that:

(1) The representation is faithful,
(2) We have codim V w = 1 if and only if w is a reflection.

If W is finite it is straightforward to see that the geometric represen-
tation ([Hu], Proposition 5.3) is reflection faithful because it preserves
a positive definite bilinear form. If W is infinite, this is not the case in
general. However, one has:
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Proposition 2.1.1 ([So6], Proposition 2.1). Given any Coxeter
system (W, S) there exists a reflection faithful representation of W on
a finite dimensional real vector space V .

For the rest of this chapter let us a fix a reflection faithful repre-
sentation V of W over a field of characteristic zero.

Because of our assumptions all reflections t ∈ T act via

(2.1.1) t(λ) = λ− 2ht(λ)vt

for some linear form ht ∈ V ∗ and vector vt ∈ V . The pair (ht, vt) is
only determined up to a some choice of scalars. However, one may
choose ht ∈ V ∗ such that

(2.1.2) xhs = ht if xsx−1 = t

where we regard V ∗ as a W -module via the contragredient action. The
elements ht ∈ V ∗ (which we will think of as equations for the hyper-
plane V t) will be important in the sequel. For this reason we make a
fixed choice of the set {ht | t ∈ T} with the only restriction being that
(2.1.2) should hold.

Lemma 2.1.2. The elements of {ht | t ∈ T} ⊂ V ∗ are pairwise
linearly independent.

Proof. Let us suppose that V s = V t for some reflections s, t ∈ T .
For parity reasons st is not a reflection. However V st is of codimension
at most 1 and hence must be all of V , as our representation is reflection
faithful. In other words st is the identity and so s = t. This implies
the lemma. �

Let R be the graded ring of regular functions on V , with V ∗ sitting
in degree 2. Because k is an infinite field we may identify R with the
symmetric algebra on V ∗. As W acts on V it also acts on R on the left
via

(wf)(λ) = f(w−1λ) for all λ ∈ V .

If w ∈ W we denote by Rw the invariants under w. If I ⊂ S we
denote by RI the invariants under WI . Recall that π̃(I) denotes a
Poincaré polynomial of WI (see Section 1.2). One has the fundamental
theorem:

Theorem 2.1.3. The ring R is a graded free module over RI . One
has an isomorphism of graded RI-modules:

R ∼= π̃(I) ·RI .

We will return to this theorem in Section 3 where we give a sketch
of a proof. The following corollary (which may be seen as a relative
version of the above statement) will also be important.
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Corollary 2.1.4. Let I ⊂ J be subsets of S. Then RI is a graded
free module over RJ and one has

RI ∼=
π̃(J)

π̃(I)
·RJ .

in RJ-Mod.

Proof. Using the above theorem and the transitivity of restriction
we conclude that there exists an isomorphism

π̃(I) ·RI ∼= π̃(J) ·RJ

in RJ -Mod. However π̃(J)/π̃(I) ∈ N[v, v−1] by Corollary 1.2.4, and so
we may divide both sides by π̃(I) to obtain the result. �

2.2. Singular standard modules. In this section we define “stan-
dard modules”. These are graded (RI , RJ)-bimodules indexed by triples
(I, p, J) where I, J ⊂ S are finitary and and p ∈ WI\W/WJ is a double
coset.

Definition 2.2.1. Let I, J ⊂ S be finitary, p ∈ WI \W/WJ and
define K = I ∩ p−Jp−1

− . The standard module indexed by (I, p, J),
denoted IRJ

p , is the ring RK of WK-invariant functions in R. We make
IRJ

p into an object in RI-Mod-RJ by defining left and right actions as
follows:

r ·m = rm for r ∈ RI and m ∈ IRJ
p

m · r = m(p−r) for m ∈ IRJ
p and r ∈ RJ

(where rm and (p−r)m denotes multiplication in RK). If I = J = ∅
we write Rw instead of IRJ

w.

This action is well-defined because if r ∈ RI (resp. r ∈ RJ) then
r (resp. p−r) lies in RK . In the future we will supress the dot in
the notation for the left and right action. If p contains id ∈ W we
sometimes omit p and write simply IRJ

Example 2.2.2. Some examples of standard objects.

(1) If either I or J is empty then I ∩ p−Jp−1
− = ∅ for all p ∈

WI\W/WJ and hence

IRJ
p
∼= R

with the (RI , RJ)-bimodule structure as in the definition.
(2) If I and J are both non-empty, the graded dimension of IRJ

p

usually varies across double cosets. For example, if W = S3 is
the symmetric group on three letters and I = J consists of one
simple reflection then W contains two (WI , WJ)-double cosets
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which we will call p1 and p2. Assume that id ∈ p1. Then, as
graded vector spaces:

IRJ
p1
∼= RI ,

IRJ
p2
∼= R.

The following lemma describes the effect of restriction of scalars on
standard objects.

Lemma 2.2.3. Let w ∈ W , I, J ⊂ S be finitary and p = WIwWJ be
the (WI , WJ)-double coset containing w. Then in RI-Mod-RJ we have
an isomorphism:

RI (Rw)RJ
∼= π̃(I, p, J) · IRJ

p .

Furthermore, if I ⊂ K, J ⊂ L are finitary and q = WKpWL then

RK (IRJ
p )RL

∼=
π̃(K, q, L)

π̃(I, p, J)
· KRL

q

in RK-Mod-RL.

Proof. If v ∈ WJ then Rw and Rwv become isomorphic when
we view them as objects in R-Mod-RJ . Similarly, if u ∈ WI then
the map r 7→ ur gives an isomorphism between Rw and Ruw when
regarded as objects in RI-Mod-R. Thus we may assume without loss
of generality that w = p−. Define K = I ∩ p−Jp−1

− so that π̃(I, p, J) =
π̃(K). The first isomorphism follows from the definition of IRJ

p and the
decomposition

R ∼= π̃(K) ·RK

of Theorem 2.1.3.
For the second statement note that, by the transitivity of restriction

and the above isomorphism we have

π̃(I, p, J) · RK (IRJ
p )RL = π̃(K, q, L) · KRL

q in RK-Mod-RL.

As π̃(K, q, L)/π̃(I, p, J) ∈ N[v, v−1] by Lemma 1.2.15 we may divide by
π̃(I, p, J) and the claimed isomorphism follows. �

2.3. Enlarging the regular functions. Our ultimate aim for the
rest of this section is to understand the effect of extending scalars on
standard modules. However, in order to do this we need to introduce
certain auxillary modules R(X) ∈ R-Mod-R corresponding to finite
subsets X ⊂ W which we think of as an enlargement of a certain ring
of regular functions.

Given w ∈ W we define its (twisted) graph

Grw = {(wλ, λ) | λ ∈ V }
which we view as a closed subvariety of V × V . Given a finite subset
X ⊂ W we denote by GrX the subvariety

GrX =
⋃

w∈X

Grw .
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We will denote by O(GrX) the regular functions on GrX which has the
structure of an R-bimodule via the inclusion GrX ↪→ V × V .

For all x ∈ W consider the inclusion

ix : V ↪→ V × V

λ 7→ (λ, x−1λ).

This provides an isomorphism of V with Grx and an explicit identifi-
cation of Rx and O(Grx) as R-bimodules.

The following lemma will be important in the next section.

Lemma 2.3.1. Let I ⊂ S be finitary. We have an isomorphism of
graded k-algebras

R⊗RI R ∼= O(GrWI
).

Proof. (See [So2], Lemma 2.2.2) Clearly the surjection R⊗R �
O(GrWI

) factorisises to yield a map

R⊗RI R � O(GrWI
).

We claim that this map is the required isomorphism.
As a left R-module, R ⊗RI R is isomorphic to π̃(I) · R by Theo-

rem 2.1.3. The subvariety GrWI
is a union of |W | hyperplanes, each

of which is isomorphic to V under the first projection V × V → V .
Hence Quot R ⊗R O(GrWI

) has dimension |W | over Quot R. Let K
be the kernel of the above surjection. Because both modules have the
same dimension over Quot R after applying Quot R ⊗R − we see that
Quot R ⊗R K = 0. However, R ⊗RW R is torsion free as a left R-
module and hence so is K. We conclude that K is zero, establishing
the claim. �

Recall that, for all t ∈ T , we have chosen an equation ht ∈ V ∗

for the hyperplane fixed by t. We will denote by (ht) ⊂ R the ideal
generated by ht. We now come to the definition of the R-bimodules
R(X).

Definition/Proposition 2.3.2. Let X ⊂ W be a finite subset.
Consider the subspace

R(X) =

{
f = (fx) ∈

⊕
x∈X

R

∣∣∣∣∣ fx − ftx ∈ (ht)
for all t ∈ T and x, tx ∈ X

}
⊂

⊕
x∈X

R.

Then R(X) is a graded k-algebra under componentwise multiplication
and becomes an object of R-Mod-R if we define left and right actions
of r ∈ R via

(rf)x = rfx

(fr)x = fx(xr)
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for f = (fx) ∈ R(X). If a pair of subgroups W1, W2 ⊂ W satisfy
W1X = X = XW2 then R(X) carries commuting left W1- and right
W2-actions if we define

(uf)x = ufu−1x for u ∈ W1,

(fv)x = fxv−1 for v ∈ W2.

If X = {x} is a singleton then R(X) ∼= Rx. If X = {x, y} consists of
two elements we write Rx,y instead of R(X).

Proof. It is straightforward to check that R(X) is a graded sub-
ring containing k. In order to see that the left and right R-operations
preserve R(X) it is therefore enough to check that (r)x∈X and (xr)x∈X

are elements of R(X) for all r ∈ R. This is clear for (r)x∈X and for
(xr)r∈X it follows from the formula tg = g − g(vt)ht for g ∈ V ∗. The
right W2-operation clearly preserves R(p). For the left W1-operation if
x, tx ∈ X one has, using (2.1.2),

(wf)x − (wf)tx = w(fw−1x − fw−1tx) ∈ (w(hw−1tw)) = (ht).

The operations clearly commute and the fact that R(X) ∼= Rx if X =
{x} is immediate from the definitions. �

Remark 2.3.3.

(1) We have defined R(X) for general finite subsets X ⊂ W but
will only ever need two cases:
(a) X = p is a (WI , WJ)-double coset for finitary I, J ⊂ S.
(b) X = {x, tx} for some x ∈ W and reflection t ∈ T .

(2) The graded ring R(X) has a natural description in terms of
the Bruhat graph of W introduced in Section 1.1. Let GX be
the full subgraph of the Bruhat graph of W with vertices X.
Then an element of R(X) can be thought of as a choice of
fx ∈ R for every vertex x ∈ Gp, subject to the conditions that
fx− fy lies in (ht) whenever x and y are connected by an edge
labelled t. Under this description the left action of R is just
the diagonal action, and the right action is the diagonal action
“twisted” by the label of each vertex. The left W1- and right
W2-actions are induced (with a twist for the action of W1) by
the left and right multiplication action of W1 ad W2 on X.

The following proposition gives a useful alternative description of
R(X).

Proposition 2.3.4. Let X ⊂ W be a finite set. There exists an
exact sequence in R-Mod-R

0→ R(X)→
⊕
x∈X

Rx →
⊕

x<tx∈X
t∈t

Rx/(ht)

where the maps are as described in the proof.
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Proof. The first map is the inclusion of R(X) into
⊕

x∈X Rx which
is clearly a morphism of R-bimodules. We describe the second map by
describing its components

Rx → Ry/(ht).

This map is zero if x /∈ {y, ty}. Otherwise it is given by

f 7→ εx,txf + (ht)

where εx,tx is defined by

εx,tx =

{
1 if x < tx
−1 if x > tx

.

This is a morphism in R-Mod-R because this is true of the quotient map
Rx → Ry/(ht) whenever x = y or x = ty. Lastly a tuple (fx) ∈ ⊕Rx

is mapped to zero if fx = ftx in Rx/(ht) for all x, tx ∈ X and t ∈ T ,
which is exactly the condition for (fx) to belong to R(X). �

The following lemma explains the title of this subsection.

Lemma 2.3.5. Let X ⊂ W be finite. The map

ρ : O(GrX)→ R(X)

f 7→ (i∗xf)x∈p

is well-defined, injective and a morphism in R-Mod-R.

Proof. Any regular function f ∈ O(GrX) is determined by its
restriction to all Grx for x ∈ X, which is just the tuple

(i∗xf)x∈p ∈
⊕
x∈p

R.

We claim that this tuple lies in R(X). Indeed, we just need to check
that i∗xf and i∗txf agree on V t if x, tx ∈ p for some t ∈ T and this
is straightforward. It follows that the map is an injection of graded
k-algebras, in particular an injection in R-Mod-R. �

In general the map

ρ : O(GrX) ↪→ R(X)

is not surjective. The question as to when it is seems quite subtle, as
the following examples show.

Example 2.3.6.

(1) We begin with an example which does not fit into the above
framework, but is nevertheless instructive. Let Z1, Z2 and Z3

be three distinct one dimensional linear subspaces of k2 and let

Z = Z1 ∪ Z2 ∪ Z3.

The ring of regular functions on Z is a proper subspace of
the space of triples (f1, f2, f3) with fi ∈ O(Zi), such that
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f1(0) = f2(0) = f3(0) (which is the analogue of R(X) above).
Indeed, both rings are graded and the dimensions of the graded
components are (1, 2, 3, 3, . . . ) and (1, 3, 3, 3, . . . ) respectively.

(2) It is a straightforward consequence of Lemma 2.3.1 that if p is
a left of right coset of a finite standard parabolic subgroup then
ρ is always an isomorphism.

(3) We now give an example where ρ is not surjective. This exam-
ple was pointed out by Matthew Dyer. Consider W = S4 acting
via permutations of coordinates on V = k4. We may identify
R = k[X1, X2, X3, X4] with W acting via w(Xi) = Xw(i). De-
note the simple reflections by r, s, t indexed so that rt = tr.
Let I = J = {r, t} and consider the double coset p = WIsWJ .
We claim that

O(Grp) ( R(p).

Indeed O(Grp) is cyclic as an R ⊗ R-module and we will see
in Theorem 2.4.1 of the next section that

R⊗RI
IRJ

p ⊗RJ R ∼= R(p).

If ρ : O(Grp) → R(p) were sujective, then R(p) would also be

cyclic and hence IRJ
p would be cyclic as an RI ⊗RJ-module.

We claim however, that IRJ
p is not cyclic as an RI ⊗ RJ-

module. This is seen already in degree 2. The image of RI⊗RJ

acting on 1 in IRJ
p
∼= R in degree 2 consists of

〈X1 + X2, X3 + X4, X2 + X4〉 ( R2.

(4) However it might be still true that, if I, J ⊂ S are finitary then
RI∩J is generated by the subrings RI and RJ . This is true for
the symmetric group Sn acting as above on k[X1, X2, . . . , Xn] if
k is of characteristic 0, as one may see by considering Newton
power sums. This trick was pointed out by Olivier Mathieu.

Because R(X) has the structure of a graded k-algebra we have an
injection

R(X) ↪→ Hom(R(X), R(X)).

However, as R(X) is generally not cyclic as an R-bimodule, R(X) may
have more endomorphisms. The following shows that this is not the
case.

Proposition 2.3.7. For all finite subsets X ⊂ W we have

Hom(R(X), R(X)) = R(X).

Proof. For the course of the proof it will be more convienient to
regard R(X) as graded left R ⊗ R-module. Let ϕ : R(X) → R(X) be
a morphism in R⊗R-Mod and denote by f = (fx)x∈X the image of 1.
Choose m = (mx) ∈ R(X). We will be finished if we can show that
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ϕ(m)z = mzfz for all z ∈ X. Let us choose z ∈ X and let g ∈ R⊗R be
a function that vanishes on Gry for z 6= y but not on Grz, and let (gx)
denote its image in R(X) (the result of acting with g on 1 ∈ R(X)).
Note that

(gm)x = δx,zgxmx

and so gm is in the image of R⊗R. Hence

gzϕ(m)z = (gϕ(m))z = ϕ(gm)z = fzgzmz

and hence ϕ(m)z = mzfz as gz is non-zero. �

2.4. Standard modules and extension of scalars. The aim of
this subsection is to study the effect of extension of scalars on standard
modules. That is, we want to understand the bimodules

RK ⊗RI
IRJ

p ⊗RJ RL ∈ RK-Mod-RL

where K ⊂ I and L ⊂ J are finitary. The key is provided by the
bimodules R(X) introduced in the previous section.

For the rest of this subsection fix finitary subsets I, J ⊂ S and a
double coset p ∈ WI \W/WJ . Recall that the bimodules R(p) have
commuting left WI- and right WJ -actions. Of course we can make
this into a left WI ×WJ action by defining (u, v)m = umv−1 for all
m ∈ R(p).

Theorem 2.4.1. Let I ⊃ K and J ⊃ L. There exists an isomor-
phism

RK ⊗RI
IRJ

p ⊗RJ RL ∼→ R(p)WK×WL

in RK-Mod-RL.

The theorem will take quite a lot of effort to prove. In Lemmas
2.4.2 and 2.4.3 below we construct a morphism

R⊗RI
IRJ

p ⊗RJ R→ R(p).

commuting with natural actions of WK ×WL on both sides. By con-
sidering invariants one may reduce the theorem to showing that this
map is an isomorphism.

Let us first describe the WI×WJ actions. By Proposition 2.3.2 and
the discussion at the beginning of this section there is an WI ×WJ -
action on R(p). We define a WI × WJ -action on R ⊗RI

IRJ
p ⊗RJ R

via
(u, v)f ⊗ g ⊗ h = uf ⊗ g ⊗ vh.

It is easy to see that this action is well-defined.
The following lemma tells us how to find the standard module IRJ

p

as a submodule of R(p).

Lemma 2.4.2. In RI-Mod-RJ we have an isomorphism

R(p)WI×WJ ∼= IRJ
p .
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Proof. Let K = I ∩ p−Jp−1
− and choose f ∈ R(p)WI×WJ . If u ∈

WK then up− = p−v for some v ∈ WJ and fp− = ((u, v)f)p− = ufp− .
In other words fp− ∈ RK . Hence we obtain a map

R(p)WI×WJ → IRJ
p

(fx) 7→ fp−

which is obviously injective and a morphism in RI-Mod-RJ .
It remains to show surjectivity. To this end choose m ∈ IRJ

p and
consider the tuple f = (fx) ∈ ⊕x∈pR where, for each x ∈ p we choose
u ∈ WI , v ∈ WJ with x = up−v and define fx = um. This is well
defined because if up−v = u′p−v′ with u, u′ ∈ WI and v, v′ ∈ WJ then
u−1u′ ∈ WI ∩ p−WJp−1

− = WK by Kilmoyer’s Theorem (1.2.8), and
hence um = u′m as m is invariant under WK . The tuple (fx) also lies
in R(p) as if x and tx both lie in p then by Proposition 1.2.12 either
t ∈ WI (in which case ftx = tfx) or tx = xt′ for some reflection t′ in WJ

(in which case fx = ftx). Lastly, it it easy to check that f is WI ×WJ

invariant. As f gets mapped to m under the above map, we see that
the map is indeed surjective. �

Having identified IRJ
p as a (RI , RJ)-submodule of R(p) we obtain

by adjunction a morphism

µ : R⊗RI
IRJ

p ⊗RJ R→ R(p).

We will see below that this is an isomorphism. However first we need:

Lemma 2.4.3. The morphism µ commutes with the WI×WJ-actions
on both modules.

Proof. This is a technical but straightforward calculation. Let
a = r1 ⊗m ⊗ r2 ∈ R ⊗RI

IRJ
p ⊗RJ R and (u, v) ∈ WI ×WJ . We want

to show that µ((u, v)a) = (u, v)µ(a).
Under µ, a gets mapped to f = (fz) ∈ R(p) where

fz = r1(xm)(zr2)

if z = xp−y with x ∈ WI and y ∈ WJ . Similarly (u, v)a = ur1⊗m⊗vr2

gets mapped to f̃ = (f̃z) ∈ R(p) where

f̃z = ur1(xm)(zvr2).

We need to show that (u, v)f = f̃ . This follows from

((u, v)f)z = ufu−1zv = u(r1(u
−1xm)(u−1zvr2)) = ur1(xm)(zvr2) = f̃z.

�

Proof of Theorem 2.4.1. By considering WK ×WL invariants
it is enough to show that the morphism µ construted above is an iso-
morphism. This will follow from two facts which we verify below:

(1) Both R(p) and R⊗RI
IRJ

p ⊗RJ R are isomorphic to π̃(p) ·R as
graded left R-modules;
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(2) The morphism µ is injective.

Indeed (1) says that each graded component of R(p) and R⊗RI
IRJ

p⊗RJ

R is of the same (finite) dimension over k. Using (2) we then see
that ϕ is an isomorphism on each graded component and hence is an
isomorphism.

We start by establishing (1) for R ⊗RI
IRJ

p ⊗RJ R. Choose w ∈ p.
By Theorem 2.1.3 we have an isomorphism of left R-modules:

R⊗RI Rw ⊗RJ R ∼= π̃(I)π̃(J) ·R.

Hence, by Lemma 2.2.3 we have (again as left R-modules):

π̃(I, p, J) ·R⊗RI
IRJ

p ⊗RJ R ∼= π̃(I)π̃(J) ·R

Dividing by π̃(I, p, J) and using Lemma 1.2.15 we conclude that

(2.4.1) R⊗RI
IRJ

p ⊗RJ R ∼= π̃(p) ·R in R-Mod

as claimed.
It seems much harder to establish (1) for R(p). This is Corollary

3.3.4 of the next section, which we prove using Demazure operators.
The rest of the proof will be concerned with (2). Choose again

w ∈ p. Using Lemma 2.3.1 we may identify R⊗RI Rw ⊗RJ R with the
regular functions on the variety

Z =

{
(λ, µ, ν)

∣∣∣∣ λ = uµ for some u ∈ WI

µ = wvν for some v ∈ WJ

}
⊂ V × V × V.

We have an obvious projection map Z → Grp sending (λ, µ, ν) to (λ, ν)
and hence we have a morphism in R-Mod-R (in fact of k-algebras)

O(Grp)→ R⊗RI Rw ⊗RJ R.

Taking w = p− this map lands in R⊗RI
IRJ

p ⊗RJ R regarded as a sub-
module of R⊗RI Rw⊗RJ R. We conclude the existence of a commutative
diagram

O(Grp)

yysssssssss
ρ

��:
::

::
::

R⊗RI
IRJ

p ⊗RJ R
ϕ // R(p)

where ρ is as in Lemma 2.3.5.
We now argue that all arrows become isomorphisms after tensoring

with Quot R. As ρ is injective and Quot R is flat over R it is enough to
show that all modules have dimension |p| over Quot R after applying
Quot R⊗R −. This is indeed the case:

(1) O(Grp): For the same reasons as in the proof of Lemma 2.3.1.

(2) R⊗RI
IRJ

p ⊗RJ R: This follows from (2.4.1)
(3) R(p): By applying Quot R ⊗R − to the exact sequence in

Proposition 2.3.4.
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We conclude that all maps (in particular µ) become isomorphisms after
applying Quot R⊗R −.

To conclude the proof, note that by the above arguments R ⊗RI

IRJ
p ⊗RJ R is torsion free as a left R-module. Hence µ is injective if and

only if this is true after applying Quot R ⊗R −. Thus µ is injective as
claimed. �

We may use this theorem to determine the morphisms between
standard modules. Recall that IRJ

p was defined as a subring of R, and

therefore has the structure of a k-algebra compatible with its (RI , RJ)-
bimodule structure. Therefore we certainly have an injection

IRJ
p ↪→ Hom(IRJ

p , IRJ
p ).

The following proposition makes this more precise.

Corollary 2.4.4. For p, q ∈ WI\W/WJ we have

Hom(IRJ
p , IRJ

q ) =

{
IRJ

p if p = q
0 otherwise.

Proof. Extension of scalars give us an injection

Hom(IRJ
p , IRJ

q )→ Hom(R⊗RI
IRJ

p ⊗RJ R,R⊗RI
IRJ

q ⊗RJ R)

because we may again restrict to RI-Mod-RJ . By the above theorem
the latter module is isomorphic to Hom(R(p), R(q)). This is 0 if p 6= q
because Hom(Rx, Ry) = 0 if x 6= y. Otherwise Hom(R(p), R(p)) =
R(p) by Proposition 2.3.7, and so Hom(IRJ

p , IRJ
p ) consists of those α ∈

Hom(R(p), R(p)) for which α(1) ∈ IRJ
p . Hence Hom(IRJ

p , IRJ
p ) = IRJ

p

as claimed. �

2.5. Support. Let X be an affine variety over k and A its k-
algebra of regular functions. We will make use of the equivalence be-
tween (finitely-generated) A-modules and (quasi)-coherent sheaves on
X (see [Har], Chapter II, Corollary 5.5). If M is an A-module, andM
is the corresponding quasi-coherent sheaf on X, then the support ofM,
which we will denote supp M by abuse of notation, consists of those
points x ∈ X for which Mx 6= 0. The support of a section m ∈ M ,
denoted supp m, is the support of the submodule generated by m. It
follows from the definition that if M ′ ↪→M � M ′′ is an exact sequence
of A-modules then

(2.5.1) supp M = supp M ′ ∪ supp M ′′.

If M is finitely generated then the support of M is the closed subvariety
of X determined by the annihilator of M ([Har], II, Exercise 5.6(b)).
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Let f : X → Y be a map of affine varieties and A → B be the
corresponding map of regular functions. If M and N are A- and B-
modules respectively, then

f(supp N) ⊂ supp(AN) ⊂ f(supp N),(2.5.2)

supp(B ⊗A M) = f−1(supp M).(2.5.3)

The first is an exercise, and the second is Exercise 19(viii), Chapter 3
of [AM] for finitely generated M , but seems to be true in general (in
any case we only need it for finitely generated M). It follows that if f
is finite (hence closed) and N is finitely generated, then

(2.5.4) f(supp N) = supp(AN).

The rest of this section will be concerned with applying notions of
support to objects in RI-Mod-RJ , where I, J ⊂ S are finitary. This is
possible as we may regard any such object as an RI ⊗RJ -module. We
identify RI ⊗ RJ with the regular functions on the quotient V/WI ×
V/WJ . Thus, given any M ∈ RI-Mod-RJ , supp M ⊂ V/WI × V/WI .

In Section 2.3, we defined the twisted graph Grx ⊂ V × V as well
as GrC for finite subsets C ⊂ W . For a double coset p ∈ WI \W/WJ

denote by IGrJ
p the image of Grp under the quotient map V × V →

V/WI × V/WJ . The subvariety IGrJ
p is equal to the image of Grx for

any x ∈ p and thus is irreducible. Given any set C ⊂ WI \W/WJ , we
define

IGrJ
C =

⋃
p∈C

IGrJ
p

which we understand as a subvariety if C is finite, and as a set if C is
infinite.

We will be interested in M ∈ RI-Mod-RJ whose support is con-
tained in IGrJ

C for some finite set C ⊂ WI \W/WJ . Given finitary
I ⊂ K and J ⊂ L we have functors of restriction and extension of
scalars between RI-Mod-RJ and RK-Mod-RL. Because the inclusion
RK ⊗RL → RI ⊗RJ corresponds to the finite map

V/WI × V/WJ → V/WK × V/WL

we may translate (2.5.3) and (2.5.4) as follows:

Lemma 2.5.1. Let I ⊂ K and J ⊂ K be finitary subsets of S and
let

qu : WI\W/WJ → WK\W/WL

denote the quotient map.

(1) If M ∈ RI-Mod-RJ and supp M = IGrJ
C for some finite subset

C ⊂ WI\W/WJ then supp(RKMRL) = KGrL
qu(C).

(2) If N ∈ RK-Mod-RL and supp M = IGrJ
C′ for some finite subset

C ′ ⊂ WK\W/WL then supp(RI⊗RK M⊗RL RJ) = IGrJ
qu−1(C′).

The same is true with “=” replaced with “⊂” throughout.
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Given a set C ⊂ WI \W/WJ and M ∈ RI-Mod-RJ we denote by
ΓCM the submodule of sections with support in IGrJ

C . That is

ΓCM = {m ∈M | supp m ⊂ IGrJ
C}.

Recall from Proposition 1.2.12 that the Bruhat order on W descends
to a partial order on WI \W/WJ and that, given p ∈ WI \W/WJ , we
write {≤ p} for the set of elements in WI \W/WJ which are smaller
than p (and similarly for {< p}, {≥ p} and {> p}). We also abbreviate

IGrJ
≤p = IGrJ

{≤p} and Γ≤pM = Γ{≤p}M

and analogously for IGrJ
<p, Γ<pM , IGrJ

≥p etc. The following additional
notation will be useful:

ΓpM = M/Γ6=pM

Γ≤p M = Γ≤pM/Γ<pM

Γ≥p M = Γ≥pM/Γ>pM.

Recall that in Subsection 2.3 we defined R(X) ∈ R-Mod-R for any
finite subset X ⊂ W .

Lemma 2.5.2. The support of f = (fx) ∈ R(X) is GrC, where

C = {x ∈ X | fx 6= 0}.

Proof. Because we may identify Rx as an R⊗R-module with the
regular functions on the irreducible Grx it follows that every 0 6= m ∈
Rx has support equal to Grx. The lemma than follows by considering
the embedding of R(X) in

⊕
x∈X Rx. �

Lemma 2.5.3. Let I, J ⊂ S be finitary and p ∈ WI \W/WJ . The
support of any non-zero m ∈ IRJ

p is IGrJ
p .

Proof. This follows from (2.5.4), Lemma 2.5.2 above and the fact
that we may view IRJ

p as an (RI , RJ)-submodule of R(p) (Lemma 2.4.2).
�

3. Equivariant Schubert calculus

In this section we introduce Demazure operators. We use them for
two purposes:

(1) To establish the self-duality (up to shifts) of certain rings RJ ,
viewed as modules over invariant subrings RI ⊂ RJ (Section
3.2).

(2) To construct filtrations on the modules R(p), where p ⊂ WI \
W/WJ is a finite double coset (Section 3.3).
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3.1. Demazure operators. In this section we recall the defini-
tion and basic properties of “classical” Demazure operators essentially
following [Dem]. Recall that (W, S) is a Coxeter system, V is a re-
flection faithful representation of W and R denotes the ring of regular
functions on V .

If t ∈ W is a reflection and f ∈ R then f−tf vanishes on the hyper-
plane fixed by t and hence is divisible by ht. We define the Demazure
operator

∂t : R[2]→ R

by

∂t(f) =
f − tf

2ht

.

It is a morphism of Rt-modules.
Let f, g ∈ R and t ∈ W be a reflection. The following properties of

∂t are immediate:

(3.1.1) ∂tf = 0 if and only if tf = f

(3.1.2) ∂t((∂tf)g) = ∂t(f(∂tg))

Let I ⊂ S be a finitary subset and WI ⊂ W the corresponding
finite parabolic subgroup. An element f ∈ R is WI-anti-invariant if
wf = (−1)`(w)f for all w ∈ WI . This is equivalent to requiring that
tf = −f for all reflections t ∈ WI . Denote by dI the product

dI =
∏

t∈WI∩T

ht ∈ R2`(wI)

which may be seen to be WI-anti-invariant. Let JI : R → R denote
the “projection onto WI-anti-invariants” operator:

JI =
1

|WI |
∑

w∈WI

(−1)`(w)w

We recall the following theorem, due to Demazure [Dem] and Bern-
stein, Gelfand and Gelfand [BGG].

Theorem 3.1.1. Let I ⊂ S be a finitary subset.

(1) The WI-anti-invariant elements of R build a cyclic RI-submodule
of R generated by dI .

(2) If st . . . u is a reduced expression for the longest element wI ∈
WI then

∂s∂t . . . ∂u = JI/dI

considered as endomorphisms of R.
(3) Let st . . . u be an expression in the elements of I of length n.

Then the operator

∂s∂t . . . ∂u : R[2n]→ R
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is zero unless st . . . u is a reduced expression, in which case it
only depends on w = st . . . u ∈ WI and not on the choice of
reduced expression. Thus one obtains well defined operators

∂w : R[2`(w)]→ R

for all w ∈ WI .
(4) The elements {∂w(dI) | w ∈ WI} give a free graded basis for

R as an RI-module. In particular,

R ∼= π̃(WI) ·RI

as an RI-module.

Comment on proof: (1) is straightforward. For an elegant proof
of (2) see Proposition 1 in [Dem]. For (3) note that, if s, t ∈ S are
simple reflections such that st has finite order then, taking WI to be
the parabolic subgroup generated by s and t, (2) implies that that ∂s

and ∂t satisfy the braid relations. (3) is then a consequence of (2) and
Tit’s theorem (see [Bo], p. 16, Prop. 5) that one obtains all reduced
expressions for an element by applying braid relations to a fixed reduced
expression. It is straightforward to see that the {∂w(dI) | w ∈ WI}
span R as an RI module. Then, assuming the existence of a relation of
minimal degree, one may always apply a Demazure operator to obtain a
non-trivial relation of smaller degree, which provides the contradiction
establishing (4). �

3.2. Duality. As a first application of Demazure operators we will
establish the self-duality (up to shifts) of certain invariant subrings of
R. Given a finite parabolic subgroup WI ⊂ W the the Demazure
operator ∂wI

corresponding to the longest element of WI allows us to
define an RI-bilinear form on R via

R×R → RI [−2`(wI)]

(f, g) 7→ (f, g)I = ∂wI
(fg).

This form is RI-bilinear because ∂wI
is a morphism of RI-modules and

is well-defined because the image of f ∈ R under ∂wI
is WI-invariant

by (3.1.1).

Lemma 3.2.1. Let x, y ∈ WI . One has

(∂xdI , ∂ydI)I ∈ δxwI ,y + (RI)+

where (RI)+ ⊂ R denotes the elements of positive degree.

Proof. Notice that

∂wI
((∂xd)(∂yd)) = ∂wI

(d(∂x−1∂yd))

by repeated application of (3.1.2). Now if xwI = y then

∂x−1∂yd = ∂w0(d) = 1
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and the lemma follows in this case. If xw0 6= y there are two possibili-
ties:

(1) `(x−1) + `(y) > `(x−1y), or
(2) `(x−1) + `(y) = `(x−1y) < `(w0).

In case 1) ∂x−1∂y = 0. In case 2) ∂x−1∂y(d) is of degree strictly greater
than 0, and thus so is ∂w0(d(∂x−1∂yd)). �

We will now use this form to establish the self-duality of R[`(wI)]
as an RI-module.

Proposition 3.2.2. The map

ϕ : R[`(wI)]→ HomRI (R[`(wI)], R
I)

given by
ϕ(f) = (f,−)I

is an ismorphism in R-Mod.

Proof. That the map is a morphism of R-modules follows from the
fact that, for all f, g, h ∈ R we have (fg, h)I = (f, gh)I . The injectivity
of ϕ is equivalent to the non-degeneracy of (·, ·)I which follows from
Theorem 3.1.1 and the above lemma. As RI-modules we have

HomRW (R[`(wI)], R
W ) ∼= HomRW (π(I)·RW , RW ) ∼= π(I)·RW ∼= R[`(wI)]

and hence ϕ must be an isomorphism. �

Corollary 3.2.3. Let I ⊂ J be subsets of S. Then

HomRJ (RI [`(wJ)− `(wI)], R
J) ∼= RI [`(wJ)− `(wI)].

Proof. We have the following isomorphisms in RJ -Mod:

π(I) · HomRJ (RI [`(wJ)− `(wI)], R
J) ∼=

∼= HomRJ (π(I) ·R[`(wJ)− `(wI)], R
J)

∼= HomRJ (R[`(wJ)], RJ)
∼= R[`(wJ)] (Proposition 3.2.2)

∼= π(I) ·RI [`(wJ)− `(wI)]

The corollary then follows by dividing both sides by π(I). �

3.3. Demazure operators on R(X). The aim of this subsection
is to define Demazure operators on R(X) and use them to construct
filtrations on R(p) for finite double cosets p ⊂ W , as well as invariant
subrings thereof. This discussion was influenced by [KT], where a
similar situation is discussed.

Recall that in Section 2.3 we defined, for all finite sets X ⊂ W a
bimodule R(X) ∈ R-Mod-R. Moreover, given subgroups W1, W2 ⊂ W
such that W1X = X = XW2, the bimodule R(X) carries commuting
left W1- and right W2-actions.
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Definition/Proposition 3.3.1. Let X, W1, W2 ⊂ W be as above.

(1) For all reflections t ∈ W1 there exists an operator f 7→ ∂tf on
R(X), the left Demazure operator to t, uniquely determined
by

f − tf = 2ht(∂tf) for all f ∈ R(p).

This is a morphism in Rt-Mod-R.
(2) For all reflections t ∈ W2 there exists an operator f 7→ f∂t on

R(X), the right Demazure operator to t, uniquely determined
by

f − ft = (f∂t)2ht for all f ∈ R(p).

This is a morphism in R-Mod-Rt.

Proof. We first treat the case of the left Demazure operator.
Uniqueness is clear as R(X) is torsion free as a left R-module. Rewrit-
ing the condition at x ∈ p we see that, if f ∈ R(X), ∂tf must be given
by

(∂tf)x =
fx − tftx

2ht

.

A priori this defines an element of Quot R. However, by definition of
R(X), fx− ftx and hence fx− tftx lies in (ht). Thus (∂tf)x ∈ R for all
x ∈ X.

It remains to see that ∂tf ∈ R(X). Because f − tf ∈ R(X) it is
clear that

(∂tf)x − (∂tf)t′x ∈ (ht′)

whenever t′ 6= t and x, t′x ∈ X. Writing out the definitions, on also
sees that

(∂tf)x − (∂tf)tx

it t-anti-invariant, and hence (∂tf)x − (∂tf)tx ∈ (ht). It follows that
∂tf ∈ R(X) and hence the left Demazure operator to t exists.

It is clear that the left Demazure operator for t ∈ WI commutes
with multiplication on the left with a t-invariant function. For the right
action of r ∈ R on f ∈ R(X) one has

(∂t(fr))x =
(fr)x − t(fr)tx

2ht

=
fx − ftx

2ht

xr = ((∂tf)r)x.

In particular, f 7→ ∂tf is a morphism in Rt-Mod-R as claimed.
We now treat the case of the right Demazure operator for a reflec-

tion t ∈ W2. The operator is clearly unique if it exists and f∂t for
f ∈ R(X) must be given by

(f∂t)x =
fx − fxt

2xht

.

Similarly to above one checks that (f∂t)x ∈ R for all x ∈ X and then
that f∂t ∈ R(X), using the definition of R(X) and (2.1.2). It is then
straighforward to see that f 7→ f∂t is a morphism in R-Mod-Rt. �
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Recall from Section 2.5 that the support of an element f ∈ R(X) is
easy to calculate: it is the set GrA where A = {x ∈ X | fx 6= 0}. The
following lemma is then an immediate consequence of the definition of
the Demazure operators.

Lemma 3.3.2. Let f ∈ R(X) such that supp f ⊂ GrA for some
A ⊂ X.

(1) If t ∈ WI is a reflection then supp ∂tf ⊂ GrA∪tA.
(2) If t ∈ WJ is a reflection then supp f∂t ⊂ GrA∪At.

For the rest of this section fix two finitary subsets I, J ⊂ S as well
as a double coset p ∈ WI \W/WJ . We now come to the main theorem
of this section, which purports the existence of certain special elements
in R(p).

Theorem 3.3.3. There exists φx ∈ R(p) for all x ∈ p, unique up
to a scalar, such that

(1) deg φx = 2(`(p+)− `(x)),
(2) supp φx ⊂ Gr≤x and (φx)x 6= 0.

The set {φw | w ∈ p} builds a basis for R(p) as a left or right R-module.

Proof. Let us first assume that there exists φx ∈ R(p) for all x ∈ p
satisfying the conditions of the theorem. We will argue that they are
then uique and form a basis for R(p) as a left or right R-module.

Suppose that f ∈ R(p) has support contained in GrA for some
downwardly closed subset A ⊂ p and choose x ∈ A maximal. As
ftx = 0 for all t ∈ T with x < tx ∈ p, from the definition of R(p) we
see that fx is divisible by

αx =
∏
t∈T

x<tx∈p

ht.

As deg αx = 2|{t ∈ T | x < tx ∈ p}| = 2(`(p+) − `(x)) by Proposition
1.2.16 we see that (φx)x is a non-zero scalar multiple of αx. Hence, we
may find r ∈ R such that

supp(f − rφx) ⊂ GrA\{x} .

It follows by induction that the {φx} span R(p) as a left R-module.
They are clearly linearly independent when we consider R(p) as a left
R-module by the support conditions. Hence they form a basis for R(p)
as a left R-module. Identical arguments show that they are also a basis
for R(p) as a right R-module.

We can also use the above facts to see that φx for x ∈ p is unique up
to a scalar. Indeed, if φx and φ′x are two candiates we may find λ ∈ k
such that φx− λφ′x is supported on Gr≤x\{x}. By the above arguments
φx − λφ′x has degree strictly greater than 2(`(p+)− `(x)) and hence is
zero.
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It remains to show existence. To get started consider ϑ = (ϑx) ∈
⊕x∈pR defined by

ϑx =

{
αp− if x = p−
0 otherwise.

Clearly ϑ ∈ R(p) and deg ϑ = 2(`(p+ − `(p−)) (again by Proposition
1.2.16). Hence we may set φp− = ϑ.

Now assume by induction that we have found φx for all x ∈ p with
`(x) < m and choose y ∈ p of length m. By Howlett’s theorem (1.2.9)
there exists a simple reflection s ∈ WI or t ∈ WJ such that either
y > sy ∈ p or y > yt ∈ p. In the first case consider ϑ = ∂sφsy ∈ R(p).
We have

(1) deg ϑ = deg φsy − 2 = 2(`(p+)− `(y)),
(2) supp ϑ ⊂ Gr≤y (by Lemma 3.3.2) and ϑy 6= 0 because (φsy)sy 6=

0.

Hence we may set φy = ϑ. Similarly in the second case we may take
φy = φyt∂t. It follows by induction that the elements {φw | w ∈ p}
exist. �

The first corollary of this theorem is a description of R(p) as a left
R-module, needed during the proof of Theorem 2.4.1.

Corollary 3.3.4. As left graded R-modules we have an isomor-
phism

R(p) ∼= π̃(p) ·R.

Proof. If P =
∑

x∈p v2(`(x)−`(p+)) it follows from the theorem that

R(p) ∼= P ·R in R-Mod.

However

P = v2`(p+)
∑
x∈p

v−2`(x) = v`(p+)−`(p−)π(p) = v`(p−)−`(p+)π(p) = π̃(p)

using the self-duality of π(p) (1.2.4) for the third step. �

Corollary 3.3.5. Let K ⊂ I, L ⊂ J and C ⊂ WK \W/WL be
downwardly closed. For all q ∈ C maximal such that q ⊂ p we have an
isomorphism in RK-Mod-RL:

ΓCR(p)WK×WL/ΓC\{q}R(p)WK×WL ∼= KRL
q [2(`(q+)− `(p+))].

Proof. For the course of the proof let us write φp
w (resp. φq

y) for
the functions in R(p) (resp. R(q)) given to us by Theorem 3.3.3. These
are well defined up to a scalar and we make a fixed but arbitrary choice.
Also denote by qu : W → WK\W/WL the quotient map.

The map (fx)x∈p 7→ (fx)x∈q from R(p) to R(q), in which we forget
fx for x /∈ q, allows us to identify Γqu−1(C)R(p)/Γqu−1(C\{q})R(p) with



54 3. SINGULAR SOERGEL BIMODULES

an ideal in R(q). Keeping this in mind we obtain a map

R(q)[2(`(q+)− `(p+))]→ Γqu−1(C)R(p)/Γqu−1(C\{q})R(p)

1 7→ φp
q+

.

As ∂sφ
p
q+

= φp
q+

∂t = 0 for all s ∈ K and t ∈ L, φp
q+

is WK × WL-
invariant. Thus (φp

q+
)x 6= 0 for all x ∈ q, and the above map is injective.

Let us consider the image of φq
x ∈ R(p) for x ∈ q in the right hand

side. It has degree

deg φq
x + deg φp

q+
= 2(`(p+)− `(x))

and has support contained in Gr≤x. Hence, by the uniqueness state-
ment in Theorem 3.3.3, it is a non-zero scalar multiple of (the image
of) φp

x. It is a consequence of Theorem 3.3.3 that φp
x for x ∈ q build a

basis for the right hand side as a left R-module, and we conclude that
the map is an isomorphism.

The WK × WL action on R(p) preserves both Γqu−1(C)R(p) and
Γqu−1(C\{q})R(p) and hence we have a WK×WL-action on both modules.
As WK ×WL acts through k-algebra automorphisms the above map
commutes with the WK ×WL-action on both modules. Taking WK ×
WL-invariants (which is exact as we are in characteristic 0) and using
Lemma 2.4.2, we follow that
KRL

p [2(`(q+)−`(p+))] ∼= (Γπ−1(C)R(p))WK×WL/(Γπ−1(C\{q})R(p))WK×WL .

However, by (2.5.4), (Γqu−1(C)R(p))WK×WL = ΓC(R(p)WK×WL) and sim-
ilarly for Γqu−1(C\{q})R(p). The claimed isomorphism then follows. �

In the sequel it will be useful to have the above corollary in a slightly
different form.

Corollary 3.3.6. Let J ⊃ K and C ⊂ WI\W/WK be downwardly
closed. If q ∈ C is maximal and p ⊃ q then we have an isomorphism
in RI-Mod-RK

ΓC(IRJ
p ⊗RJ RK)/ΓC\{q}(

IRJ
p ⊗RJ RK) ∼= IRK

q [2(`(q+)− `(p+))].

Proof. By Theorem 2.4.1 we have an isomorphism
IRJ

p ⊗RJ RK ∼= R(p)WI×WK

in RI-Mod-RK . The claim is then an immediate consequence of Corol-
lary 3.3.5. �

4. Flags, characters and translation

In this section we define and study the categories of objects with
nabla and delta flags. These categories provide the first step in the
categorication of the Hecke category.

Recall from the introduction to this chapter than to any M ∈
RI-Mod-RJ one may associate two filtrations, and that M has a nabla
(resp. delta) flag if these filtrations are exhaustive and the successive
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quotients in the first (resp. second) filtration are isomorphic to a fi-
nite direct sum of shifts of standard modules. Given an object with a
nabla or delta flag it is natural to consider its “character” in IHJ , which
counts the graded multiplicity of standard modules these subquotients.

The key results of this section are Theorems 4.1.5 and 4.3.3, which
tell us that if J ⊂ K then the functors of restriction and extension
of scalars between RI-Mod-RJ and RI-Mod-RK restrict to functors
between the corresponding categories of objects with nabla or delta
flags. Moreover, after normalisation, one may describe the effect of
these functors on the characters in terms of multiplication in the Hecke
category.

The structure of this section is as follows. In Section 4.1 we define
the subcategory of modules with nabla flags and the nabla character,
and begin the proof of Theorem 4.1.5. The proof involves certain tech-
nical splitting and vanishing statements, which we postpone to Section
4.2. In Section 4.3 we define the subcategory of modules with delta
flags and the delta character, as well as a duality which is used to
relate the categories of object with delta and nabla flags and prove
Theorem 4.3.3.

4.1. Objects with nabla flags and translation. For the dura-
tion of this section fix finitary subsets I, J ⊂ S. Denote by IRJ the
full subcategory of modules M ∈ RI-Mod-RJ such that:

(1) M is finitely generated, both as a left RI-module, and as a
right RJ -module;

(2) there exists a finite subset C ⊂ WI\W/WJ such that supp M ⊂
IGrJ

C .

Recall that we call a subset C ⊂ WI\W/WJ downwardly closed if

C = {p ∈ WI\W/WJ | p ≤ q for some q ∈ C}.

We now come to the definition of objects with nabla flags.

Definition 4.1.1. The category of objects with nabla flags, de-
noted IFJ

∇, is the full subcategory of modules M ∈ IRJ such that, for
all downwardly closed subsets C ⊂ WI \W/WJ and maximal elements
p ∈ C, the subquotient

ΓCM/ΓC\{p}M

is isomorphic to a direct sum of shifts of modules of the form IRJ
p (which

is necessarily finite because M ∈ IRJ).

We begin with a lemma that simplifies the task of checking whether
a module M ∈ IRJ belongs to IFJ

∇. We call an enumeration p1, p2, . . .
of the elements of WI\W/WJ a refinement of the Bruhat order if pi ≤ pj

implies that i ≤ j. If we let C(m) = {p1, p2, . . . , pm} then all the sets
C(m) are downwardly closed, and pm ∈ C(m) is maximal. Hence, if
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M ∈ IFJ
∇ then ΓC(m)M/ΓC(m−1)M is isomorphic to a direct sum of

shifts of IRJ
pm

. In fact, the converse is true:

Lemma 4.1.2 (Soergel’s “hin-und-her” lemma). Let p1, p2, . . . and
C(m) be as above. Suppose M ∈ IRJ is such that, for all m, the
subquotient

ΓC(m)M/ΓC(m−1)M

is isomorphic to a direct sum of shifts of IRJ
pm

. Then M ∈ IFJ
∇.

Moreover, if p = pm then the natural map

Γ≤pM/Γ<pM → ΓC(m)M/ΓC(m−1)M

is an isomorphism.

Proof. Let C ⊂ WI \W/WJ be a downwardly closed subset and
p ∈ C be maximal. We need to show that

ΓCM/ΓC\{p}M

is isomorphic to a direct sum of shifts of modules of the form IRJ
p .

Let p, p′ ∈ WI\W/WJ be incomparable in the Bruhat order. We will
see in the next section (Lemma 4.2.2) that Ext1

RI⊗RJ (IRJ
p , IRJ

p′) = 0. In
particular, if pi and pi+1 are incomparable in the Bruhat order then
ΓC(i+1)M/ΓC(i−1)M is isomorphic to a direct sum of shifts of modules
IRJ

pi
and IRJ

pi+1
. Hence, if we let C ′ be associated to the sequence

obtained by swapping two elements qi and qi+1 we see that the natural
maps

ΓC(i)M/ΓC(i−1)M → ΓC′(i+1)M/ΓC′(i)M

ΓC′(i)M/ΓC′(i−1)M → ΓC(i+1)M/ΓC(i)M

are isomorphisms.
Now let C ⊂ WI\W/WJ be downwardly closed and p ∈ C maximal.

After swapping finitely many many elements of our sequence we may
assume C(m) = C and pm = p and the first statement follows. The
second statement follows by taking C = {≤ p}. �

We now want to define the “character” of an object M ∈ IFJ
∇. It

is natural to renormalise IRJ
p and define

I∇J
p = IRJ

p [`(p+)].

If p contains the identity, we sometimes omit p and write I∇J .
By assumption, if M ∈ IFJ

∇ we may find polynomials gp(M) ∈
N[v, v−1] such that, for all p ∈ WI\W/WJ we have

Γ≤pM/Γ<pM ∼= gp(M) · I∇J
p .

We now define the nabla character by

ch∇ : IFJ
∇ → IHJ

M 7→
∑

p∈WI\W/WJ

gp(M) IHJ
p .
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We now come to the definition of translation functors, which (up
to a shift) are the functors of extension and restriction of scalars. Note
that, if K ⊂ L are finitary subsets of S we have an inclusion RL ⊂ RK .

Definition 4.1.3. Let K ⊂ S be finitary.

(1) If J ⊂ K the functor of “translating onto the wall” is:

− · JϑK : RI-Mod-RJ → RI-Mod-RK

M 7→ MRK [`(wK)− `(wJ)].

(2) If J ⊃ K the functor of “translating out of the wall” is:

− · JϑK : RI-Mod-RJ → RI-Mod-RK

M 7→ M ⊗RJ RK .

Remark 4.1.4. Of course it is also possible to define translation
functors “on the left”. We have chosen to only define and work with
translation functors acting on one side because it simplifies the exposi-
tion considerably.

The following theorem is fundamental to all that follows. It shows
that translation functors preserve the categories of objects with nabla
flags and that we may describe the effect of translation functors on
characters.

Theorem 4.1.5. Let K ⊂ S be finitary with J ⊂ K or K ⊂ J .

(1) If M ∈ IFJ
∇ then M · JϑK ∈ IFK

∇ .
(2) The following diagrams commute:

IFJ
∇

ch∇
��

−·JϑK
// IFK

∇

ch∇
��

IFJ
∇

ch∇
��

[1]
// IFJ

∇

ch∇
��

IHJ
−∗J

JHK

// IHK IHJ
·v−1

// IHJ

Before we can prove this we will need a preparatory result.

Proposition 4.1.6. Let J ⊂ K be finitary and

qu : WI\W/WJ → WI\W/WK

be the quotient map. Let C ⊂ WI\W/WK be downwardly closed.

(1) If M ∈ IFJ
∇ then

(Γqu−1(C)M)RK = ΓC(MRK ).

(2) If M ∈ IFK
∇ then

(ΓCM)⊗RK RJ = Γqu−1(C)(M ⊗RK RJ).

Proof. (1) is a direct consequence of (2.5.4). For (2) consider the
exact sequence

ΓCM ↪→M � M/ΓCM.
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Because M ∈ IFJ
∇ the left (resp. right) module has a filtration with

subquotients isomorphic to a direct sum of shifts of IRJ
p with p ∈ C

(resp. p /∈ C). Applying the exact functor − ⊗RK RJ we obtain an
exact sequence

ΓCM ⊗RK RJ ↪→M ⊗RK RJ � M/ΓCM ⊗RK RJ .

By exactness, the left (resp. right) modules have a filtration with
subquotients a direct sum of shifts of IRJ

p⊗RK RJ with p ∈ C (resp. p /∈
C). By Corollary 3.3.6, IRJ

p ⊗RK RJ has a filtration with subquotients

isomorphic to (a shift of) IRJ
q with q ∈ qu−1(p). Moreover the support

of any non-zero element in IRJ
q is precisely IGrJ

q (Lemma 2.5.3). Thus
the above exact sequence is equal to

Γqu−1(C)(M ⊗RK RJ) ↪→M ⊗RK RJ � M/Γqu−1(C)(M ⊗RK RJ)

which implies the proposition. �

We can now prove the Theorem 4.1.5.

Proof of Theorem 4.1.5. It is easy to see that M · JϑK ∈ IRK

using Lemma 2.5.1 and the fact that RJ is finite over RK in the case
that J ⊃ K. We split the proof into two cases.

Case 1: Translating out of the wall (J ⊃ K): We first prove part
(1) of the theorem. Let

qu : WI\W/WK → WI\W/WJ

be the quotient map. Because qu is a surjective morphism of posets we
may choose an enumeration p1, p2, . . . of the elements of WI \W/WK

refining the Bruhat order such that, after deleting repetitions, qu(p1),
qu(p2), . . . is a listing of the elements of WI\W/WJ refining the Bruhat
order. Fix q ∈ WI\W/WJ and p = pm ∈ qu−1(q) and define

C(n) = {p1, p2, . . . , pn}.

By the hin-und-her lemma (4.1.2) it is enough to show that

ΓC(m)(M ⊗RJ RK)/ΓC(m−1)(M ⊗RJ RK)

is isomorphic to a direct sum of shifts of IRK
p .

The set F = qu(C(m)) is downwardly closed and contains q as a
maximal element. As M ∈ IFJ

∇ there exists an exact sequence

ΓF\{q}M ↪→ ΓF M � P · IRJ
q

for some P ∈ N[v, v−1]. Applying − ⊗RJ RK and using Proposition
4.1.6 we conclude an exact sequence

Γqu−1(F\{q})(M ⊗RJ RK) ↪→ Γqu−1(F )(M ⊗RJ RK) � P · IRJ
q ⊗RJ RK
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As Γqu−1(F\{q})(M ⊗RJ RK) is contained in both ΓC(m)(M ⊗RJ RK)
and ΓC(m−1)(M ⊗RJ RK) by the third isomorphism theorem we will be
finished if we can show that

ΓC(m)(
IRJ

q ⊗RJ RK)/ΓC(m−1)(
IRJ

q ⊗RJ RK)

is isomorphic to a direct sum of shifts of IRJ
p . But this is precisely the

statement of Corollary 3.3.6. Hence M · JϑK ∈ IFK
∇ .

We now prove (2). The commutativity of the right hand diagram
is clear. As − · JϑK is exact and every element in IFJ

∇ is an extension
of the nabla modules we only have to check the commutativity of the
left hand diagram for a nabla module. That is, we have to verify that

ch∇(I∇J
q ) ∗J JHK = ch∇(I∇J

q · JϑK).

By Proposition 2.2.4 the left hand side is equal to

IHJ
q ∗J JHK =

∑
p∈WI\q/WJ

v`(q+)−`(p+) IHK
p .

For the right hand side note that:

Γ≤p(
I∇J

q ⊗RJ RK)/Γ<p(
I∇J

q ⊗RJ RK) ∼=
∼= Γ≤p(

IRJ
q ⊗RJ RK)/Γ<p(

IRJ
q ⊗RJ RK)[`(q+)]

∼= IRK
p [2`(p+)− `(q+)] (Corollary 3.3.6)

∼= v`(p+)−`(q+) · I∇K
p

Therefore, by definition of ch∇,

ch∇(I∇J
q · JϑK) =

∑
p∈WI\q/WJ

v`(q+)−`(p+) IHK
p .

This completes the proof in case J ⊃ K.
Case 2: Translating onto the wall (J ⊂ K): Denote (as usual) by

qu the quotient map

qu : WI\W/WJ → WI\W/WK .

Let C ⊂ WI\W/WK be downwardly closed and choose q ∈ C maximal.
Consider the exact sequence

Γqu−1(C\{q})M ↪→ Γqu−1(C)M � Γqu−1(C)M/Γqu−1(C\{q})M.

As M ∈ IFJ
∇ the right-hand module has a filtration with subquotients

isomorphic to direct sums of shifts IRJ
p with p ∈ qu−1(q). In Proposition

4.2.5 in the next subsection we will see that any such module splits as
a direct sum of shifts of IRK

q upon restriction to RK . This implies

that MRK ∈ IFK
∇ because, by Proposition 4.1.6, the restriction to

RI-Mod-RK of the above exact sequence is identical to

ΓC\{q}(MRK ) ↪→ ΓC(MRK ) � ΓC(MRK )/ΓC\{q}(MRK ).
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We now turn our attention to (2). As above, it is enough to check
the commutativity of the left-hand diagram for a nabla module. Let
p ∈ WI\W/WJ and q = qu(p). We need to check that

ch∇(I∇J
p ) ∗J JHK = v`(q−)−`(p−)π(I, q, K)

π(I, p, J)
IHK

q = ch∇(I∇J
p · JϑK)

where the first equality follows from Proposition 2.2.4. By definition
of ch∇ this follows from the isomorphism

I∇J
p · JϑK ∼= v`(p−)−`(q−)π(I, q, K)

π(I, p, J)
· I∇J

q

which we prove in Lemma 4.1.7 below. �

Lemma 4.1.7. Let J ⊂ K, p ∈ WI \W/WJ and q = WIpWK. We
have an isomorphism

I∇J
p · JϑK ∼= v`(p−)−`(q−)π(I, q, K)

π(I, p, J)
· I∇K

q .

Proof. By Lemma 2.2.3 we have

(I∇J
p ) · JϑK ∼= (IRJ

p )RK [`(p+) + `(wK)− `(wJ)]

∼=
π̃(I, q, K)

π̃(I, p, J)
· IRJ

q [`(p+) + `(wK)− `(wJ)]

∼= va π(I, q, K)

π(I, p, J)
· I∇J

q

where

a = `(wI,p,J)− `(wI,q,K) + `(p+)− `(q+) + `(wK)− `(wJ)

= (`(p+)− `(wI)− `(wJ) + `(wI,p,J))−
(`(q+)− `(wI)− `(wK) + `(wI,q,K))

= `(p−)− `(q−)

by Corollary 1.2.11. �

4.2. Vanishing and splitting. This is a technical section in which
we prove two vanishing statements which were postponed in the last
section.

Let us begin with some generalities. Let A be a ring. An extension
between two A-modules

M → E → N

gives an element of Ext1
A(N, M) by considering the long exact se-

quence associated to Hom(−, M) and looking at the image of idM in
Ext1(N, M); the sequence splits if and only if this class is zero.

Now let A′ → A be a homomorphism of rings. If M and N are
A-modules one has maps

rm : Extm
A (N, M)→ Extm

A′(N, M).
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We will need the following facts:

(1) An extension between M and N splits upon restriction to A′

if and only its class lies in the kernel of the map

r1 : Ext1
A(N, M)→ Ext1

A′(N, M).

(2) A short exact sequence M ′ ↪→M � M ′′ yields a commutative
diagram of long exact sequences:

(4.2.1) // Ext1
A(M ′′, N) //

��

Ext1
A(M, N) //

��

Ext1
A(M ′, N) //

��
// Ext1

A′(M
′′, N) // Ext1

A′(M, N) // Ext1
A′(M

′, N) //

(3) Similarly, if N ′ ↪→ N � N ′′ is a short exact sequence, we
obtain a commutative diagram of long exact sequences:

(4.2.2) // Ext1
A(M, N ′) //

��

Ext1
A(M, N) //

��

Ext1
A(M, N ′′) //

��
// Ext1

A′(M, N ′) // Ext1
A′(M, N) // Ext1

A′(M, N ′′) //

These facts become transparent when reinterpreted in the derived cat-
egory (see e.g. [Wie]).

Given a vector space W , denote by O(W ) its graded ring of regular
functions.

Lemma 4.2.1. (Lemma 5.8 in [So6]) Let W be a finite dimensional
vector space and U, V ⊂ W two linear subspaces. Then

Ext1
O(W )(O(U),O(V ))

is only non-trivial if V ∩U is V or a hyperplane in V . In the later case
it is generated by the class of any short exact sequence of the form

O(V )[−2]
α·
↪→ O(V ∪ U) � O(U)

with α ∈ W ∗ a linear form satisfying α|U = 0 and α|V 6= 0.

We now turn to our situation, with the goal of analysing extensions
between standard modules. Notationally it proves more convenient
to work with left modules, which we may do using the equivalences
A1-Mod-A2

∼= A1 ⊗ A2-Mod as all our rings are assumed commutative.
We will do this for the rest of ths subsection without further comment.

Using the identification of Rx with O(Grx) and Lemma 4.2.1 we
see that Ext1

R⊗R(Rx, Ry) is non-zero only when Grx and Gry intersect
in codimension 1. As

Grx ∩Gry
∼= V x−1y

and the representation of W on V is reflection faithful, this occurs only
when y = xt for some reflection t ∈ T . We conclude that there are no
extensions between Rx and Ry unless x 6= yt for some reflection t ∈ W .
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Now let p, p′ ∈ WI\W/WJ and suppose we have an extension of the
form

IRJ
p ↪→ E � IRJ

p′ .

we may extend scalars to obtain an exact sequence

R⊗RI
IRJ

p ⊗RJ R ↪→ Ẽ � R⊗RI
IRJ

p′ ⊗RJ R.

If we again restrict to RI ⊗ RJ we obtain a number of copies of our
original extension. By Theorem 2.4.1 we have an isomorphism

R⊗RI
IRJ

p ⊗RJ R ∼= R(p).

Therefore our extension takes the form

R(p) ↪→ Ẽ � R(p′).

Lemma 4.2.2. Suppose that p, p′ ∈ WI \W/WJ are not comparable
in the Bruhat order. Then

Ext1
RI⊗RJ (IRJ

p , IRJ
p′) = 0.

Proof. By the above discussion it is enough to show that there are
no extensions between R(p) and R(p′). As p and p′ are incomparable,
there are no pairs x ∈ p and x′ ∈ p′ with x′ = xt for some t ∈ T . Thus
(again by the above discussion), Ext1

R⊗R(Rx, Rx′) for all x ∈ p, x′ ∈ p′.
By Corollary 3.3.5, R(p) (resp. R(p′)) has a filtration with successive
subquotients Rx for x ∈ p (resp. x ∈ p′). By induction and the long
exact sequence of Ext it follows first that Ext1

R⊗R(R(p), Rx′) = 0 for
all x′ ∈ p′, and then that Ext1

R⊗R(R(p), R(p′)) = 0. �

Our goal for the rest of this section is to prove Proposition 4.2.5
below. We start with two preparatory lemmas.

Lemma 4.2.3. If x ∈ W and t ∈ T then the map

r1 : Ext1
R⊗R(Rx, Rxt)→ Ext1

R⊗Rt(Rx, Rxt)

induced by the inclusion R⊗Rt ↪→ R⊗R is zero.

Proof. Given c ∈ R⊗R of degree 2, vanishing on Grx but not on
Grxt we obtain an extension

(4.2.3) Rxt[−2]
·c
↪→ Rx,xt � Rx.

By Lemma 4.2.1, it is enough to show that (4.2.3) splits upon restriction
to R ⊗ Rt. Consider the map Rx,xt → Rxt[−2] sending f to the image
of f∂t, where ∂t is the (right) Demazure operator introduced in Section
3.3. This is a morphism of R ⊗ Rt-modules. As c vanishes on Grx

but not on Grxt, c∂t is non-zero, hence is a non-zero scalar for degree
reasons. Thus a suitable scalar multiple of this map provides a splitting
of (4.2.3) over R⊗Rt. �
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Lemma 4.2.4. Let I, J ⊂ K be finitary subsets of S and p, p′ ∈
WI \W/WJ be such that p 6= p′ but WIpWK = WIp

′WK. Then every
extension between IRJ

p and IRJ
p′ splits upon restriction restriction to

RI ⊗RK.

Proof. Note that by the above discussion it is enough to show
that every extension between R(p) and R(p′) splits upon restriction to
RI ⊗ RK . First note that if x ∈ p′ and y ∈ p with x = yt for some
reflection t ∈ W , then either t ∈ WK or x = t′y for some t′ ∈ WI by
Proposition 1.2.12. The second possibility is impossible however, as
p 6= p′. We conclude, using the previous lemma, that if x ∈ p′ and
y ∈ p then either ExtR⊗R(Rx, Ry) = 0 or the map ExtR⊗R(Rx, Ry) →
ExtRI⊗RK (Rx, Ry) is zero.

We now proceed similarly to as in the proof of Lemma 4.2.2. In-
ducting over a filtration on R(p) and using (4.2.2) we conclude that
the map

Ext1
R⊗R(Rx, R(p))→ Ext1

RI⊗RK (Rx, R(p))

induced by the inclusion RI ⊗ RK ↪→ R ⊗ R is zero for all x ∈ p′. In-
ducting again using (4.2.1) we see that the map Ext1

R⊗R(R(p′), R(p))→
Ext1

RI⊗RK (R(p′), R(p)) is zero, which establishes the lemma. �

Proposition 4.2.5. Let I, J ⊂ K be finitary subsets of S and let
q ∈ WI \W/WK. Let B ∈ IFJ

∇ and suppose that supp B ⊂ IGrJ
C for

some C ⊂ WI \ q/WJ . Then the restriction BRK ∈ RI-Mod-RK is
isomorphic to a direct sum of shifts of standard modules IRK

q .

Proof. Choose p ∈ C maximal in the Bruhat order. As B ∈ IFJ
∇

we have an exact sequence

(4.2.4) ΓC\{p}B ↪→ B � P · IRJ
p

for some P ∈ N[v, v−1]. As ΓC\{p}B ∈ IFJ
∇ we may induct over a

suitable filtration of ΓC\{p}B and conclude, with the help of Lemma
4.2.4, that (4.2.4) splits upon restriction to RI ⊗RK .

Now let us choose a listing p1, p2, . . . pn of the elements of C refining
the Bruhat order and let C(m) = {p1, p2, . . . , pm} denote the first m
elements as usual. Using downward induction and the above argument
it follows that, in RI-Mod-RK , we have an isomorphism

BRK
∼=

⊕
(ΓC(m)B/ΓC(m−1)B)RK .

The proposition then follows as (IRJ
p )RK is isomorphic to a direct sum

of shifts of IRK
q where q = pWK by Corollary 2.2.3. �

4.3. Delta flags and duality. In this section we define a category
of objects with delta flags, IFJ

∆, which is “dual” to IFJ
∇. Just as in the

case of objects with nabla flags the translation functors preserve IFJ
∆

and their effect on a “delta character”

ch∆ : IFJ
∆ → IHJ
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can be described in terms of the Hecke category.
Of course it would be possible to repeat the same arguments as

those used for objects with nabla flags. However, one may define a
duality

D : IFJ
∇

∼→ IFJ
∆

opp

commuting with the translation functors. This allows us to use what
we already know about objects with nabla flags to follow similar state-
ments for objects with delta flags.

For the rest of this section fix a pair I, J ⊂ S of finitary subsets.
Recall that we call a subset U ⊂ WI\W/WJ upwardly closed if

U = {p ∈ WI\W/WJ | p ≥ q for some q ∈ C}.

Definition 4.3.1. The category of objects with ∆-flags, denoted
IFJ

∆ is the full subcategory of IRJ whose objects are modules M ∈ IRJ

such that, for all upwardly closed subsets U ⊂ WI\W/WJ and minimal
elements p ∈ U , the subquotient

ΓUM/ΓU\{p}M

is isomorphic to a direct sum of shifts of IRJ
p .

Just as for objects with nabla flags there is a “hin-und-her” lemma,
whose proof is similar to that for objects with nabla flags (and works
because the support of M ∈ IRJ is always contained in IGrJ

C for some
finite subset C ⊂ WI\W/WJ).

Lemma 4.3.2 (“Hin-und-her lemma for delta flags”). Let p1, p2, . . .
be an enumeration of the elements of WI \W/WJ refining the Bruhat
order and let Č(m) = {pm+1, pm+2, . . . }. Then M ∈ IRJ is in IFJ

∇ if
and only if, for all m, the subquotient

ΓČ(m−1)M/ΓČ(m)M

is isomorphic to a direct sum of shifts of IRJ
pm

.

Moreover, if M ∈ IRJ and p = pm then the natural map

Γ≥pM/Γ>pM → ΓČ(m−1)M/ΓČ(m)M

is an isomorphism.

For each p ∈ WI\W/WJ we renormalise IRJ
p and define

I∆J
p = IRJ

p [−`(p−)].

If id ∈ p we sometimes omit p and write I∆J for I∆J
p . If M ∈ IFJ

∆

then we may find polynomials hp(M) ∈ N[v, v−1] such that, for all
p ∈ WI\W/WJ , we have an isomorphism

Γ≥pM/Γ>pM ∼= hp(M) · I∆J
p .
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We define the delta character to be the map

ch∆ : IFJ
∆ → IHJ

M 7→
∑

p∈WI\W/WJ

v`(p−)−`(p+)hp(M) IHJ
p .

The analogue of Theorem 4.1.5 in this context is the following:

Theorem 4.3.3. Let K ⊂ S with either J ⊂ K or J ⊃ K.

(1) If M ∈ IFJ
∆ then B · JϑK ∈ IFK

∆ .
(2) The following diagrams commute:

IFJ
∆

ch∆

��

−·JϑK
// IFK

∆

ch∆

��

IFJ
∆

ch∆

��

[1]
// IFJ

∆

ch∆

��
IHJ

∗J
JHK

// IHK IHJ
v· // IHJ

We define a duality functor

D : RI-Mod-RJ → RI-Mod-RJ

M 7→ HomRI (M, RI [2`(wJ)])

where we make DM into a bimodule using the bimodule structure on
M . That is, if f ∈ DM , then

(r1fr2)(m) = f(r1mr2) for all m ∈M .

We do not include reference to I and J in the notation for D, and hope
this will not lead to confusion. The following proposition shows that
the translation functors commute with duality.

Proposition 4.3.4. Let K ⊂ S be finitary with either J ⊂ K or
J ⊃ K, and let M ∈ RI-Mod-RJ . In RI-Mod-RK one has

D(M · JϑK) ∼= (DM) · JϑK .

Proof. If J ⊂ K then the isomorphism D(M · JϑK) ∼= (DM) ·
JϑK is a tautology. So assume that J ⊃ K. We will use standard
isomorphisms discussed in Section 1 and switch between left and right
modules as appropriate (note that we have already done this once in
the definition of D). In RI-Mod-RK we have

D(M · JϑK) = HomRI (M ⊗RJ RK , RI [2`(wK)])

∼= HomRJ (RK , HomRI (M, RI [2`(wK)]) (1.0.8)

∼= HomRI (M, RI [2`(wK)])⊗RJ HomRJ (RK , RJ) (1.0.9)

∼= HomRI (M, RI [2`(wJ)])⊗RJ RK (3.2.3)

= (DM) · JϑK �

Theorem 4.3.3 now follows from Theorem 4.1.5 and the following
proposition, which also explains the name “duality”.
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Proposition 4.3.5. The restriction of D to IFJ
∇ defines an equiv-

alence of IFJ
∇ with IFJ

∆
opp

and we have a commutative diagram:

IFJ
∇

D //

ch∇ ��;
;;

;;
;;

IFJ
∆

opp

ch∆����
��

��
�

IHJ

Before we begin the proof we state a lemma, describing the effect
of D on a nabla module.

Lemma 4.3.6. If p ∈ WI\W/WJ we have

D(I∇J
p ) ∼= I∆J

p [`(p+)− `(p−)].

Proof. Let K = I ∩ p−Jp−1
− . In RK-Mod we have isomorphisms

HomRI (RK , RI [2`(wJ)]) ∼= RK [2(`(wI) + `(wJ)− `(wK))] (Cor. 3.2.3)

∼= RK [2(`(p+)− `(p−))] (Cor. 1.2.11).

As a left module, IRJ
p is equal to RK where RI acts via the inclusion

RI ↪→ RK . Hence

D(IRJ
p ) ∼= IRJ

p [2(`(p+)− `(p−))]

and we have

D(I∇J
p ) ∼= D(IRJ

p [`(p+)]) ∼= IRJ
p [`(p+)− 2`(p−)] ∼= I∆J

p [`(p+)− `(p−)]

as claimed. �

Proof of Proposition 4.3.5. Let M ∈ IFJ
∇. We have to show

that DM ∈ IFJ
∆, and that ch∇(M) = ch∆(DM). Choose an enu-

meration p1, p2, . . . of the elements of WI \W/WJ refining the Bruhat
order and let C(m) = {p1, . . . , pm} and Č(m) = {pm+1, pm+2, . . . }. As
M ∈ IFJ

∇ we can find polynomials gm ∈ N[v, v−1] such that, for all m,
we have an exact sequence

ΓC(m−1)M ↪→ ΓC(m) � gm · I∇J
pm

.

Consider the “cofiltration”:

(4.3.1) · · ·� M/ΓC(m−1)M � M/ΓC(m)M � · · ·
By the third isomorphism theorem we have an exact sequence

gm · I∇J
pm

↪→M/ΓC(m−1)M � M/ΓC(m)M.

We know that I∇J
p is graded free as an RI-module for all p. We con-

clude, using induction and the above exact sequence that the same is
true of every module in (4.3.1). In particular, D is exact when applied
to (4.3.1) and we obtain a filtration of DM

(4.3.2) · · · ←↩ D(M/ΓC(m−1)M)←↩ D(M/ΓC(m)M)←↩ · · ·
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with successive subquotients isomorphic to

(4.3.3) D(gm · I∇J
pm

) ∼= gm ·D(I∇J
pm

) ∼= v`(p+)−`(p−)gm · I∆J
pm

(for the second isomorphism we use Lemma 4.3.6 above). It follows
that the filtration (4.3.2) is identical to

(4.3.4) · · · ←↩ ΓČ(m−1)DM ←↩ ΓČ(m)DM ←↩ · · · .

Thus, by the “hin-und-her” lemma we conclude that M ∈ IFJ
∆. Using

(4.3.3) and the “hin-und-her” lemma again we see that

ch∇(M) =
∑

gm
IHJ

pm
= ch∆(DM).

Lastly, the restriction of D to IFJ
∇ gives an equivalence with IFJ

∆
opp

because the objects in both categories are free as left RI-modules. �

5. Singular Soergel bimodules and their classification

In this section we complete the categorication of the Hecke category
in terms of Soergel bimodules. After the preliminary work completed in
the previous sections, the only remaining difficulty is the classification
of the indecomposable objects in IBJ . The key to the classification
is provided by Theorem 5.4.1 which explicitly describes the graded
dimension of Hom(M, N) for certain combinations of Soergel bimodules
and modules with nabla and delta flags.

In Section 5.1 we define the categories of singular Soergel bimodules,
as well as a certain smaller category of bimodules (the “Bott-Samelson
bimodules”), for which a description of homomorphisms is straight-
forward (Theorem 5.2.2). In order to extend this description to all
special bimodules we need to consider various localisations of Soergel
bimodules, which occupies Section 5.3. In Section 5.4 we then prove
the Theorem 5.4.1 and the classification follows easily. In the last sec-
tion we investigate the characters of indecomposable Soergel bimodules
more closely, recall Soergel’s conjecture and show that it implies a for-
mula the characters of all indecomposable special bimodules in IBJ in
terms of Kazhdan-Lusztig polynomials.

5.1. Singular Bott-Samelson and Soergel bimodules. We fi-
nally come to the definition of Soergel bimodules.

Definition 5.1.1. We define the categories of Bott-Samelson bi-
modules, denoted IBJ

BS, to be the smallest collection of full additive
subcategories of RI-Mod-RJ for all finitary subsets I, J ⊂ S satisfying:

(1) IBI
BS contains IRI for all finitary subsets I ⊂ S;

(2) If B ∈ IBJ
BS then so is B[ν] for all ν ∈ Z;

(3) If B ∈ IBJ
BS and K ⊂ S is finitary, satisfying J ⊂ K or

J ⊃ K, then B · JϑK ∈ IBK
BS;

(4) If B ∈ IBJ
BS then all objects isomorphic to B are in IBJ

BS.
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We define the categories of singular Soergel bimodules, denoted IBJ ,
to be the smallest collection of additive subcategories of RI-Mod-RJ for
all finitary I, J ⊂ S satisfying:

(1) IBJ contains all objects of IBJ
BS;

(2) IBJ is closed under taking direct summands.

We write BBS and B instead of ∅B∅BS and ∅B∅.

The definition of the category of singular Soergel bimodules is more
technical than that used in the introduction. However, from condition
3) it is clear that IBJ

BS contains all tensor products

RI1 ⊗RJ1 RI2 ⊗RJ2 · · · ⊗RJn−1 RIn

where I = I1 ⊂ J1 ⊃ I2 ⊂ · · · ⊂ Jn−1 ⊃ In = J are all finitary
subsets of S. It follows that the definition of IBJ given above and in
the introduction are the same.

By Theorems 4.1.5 and 4.3.3 it follows by induction that any object
M ∈ IBJ

BS lies in IFJ
∇ and IFJ

∆. As the categories IFJ
∇ and IFJ

∆ are
closed under taking direct summands, the same is true of IBJ .

5.2. Homomorphisms between Bott-Samelson bimodules.
In this section we use the fact that translation onto and out of the wall
are adjoint (up to a shift) to establish a formula for all homomorphisms
between Bott-Samelson bimodules.

We start by proving the adjunction.

Lemma 5.2.1. Let I, J, K ⊂ S be finitary with either J ⊂ K or
J ⊃ K. Let M ∈ RI-Mod-RJ and N ∈ RI-Mod-RK. We have an
isomorphism in RI-Mod:

Hom(M · JϑK , M) ∼= Hom(M, N · KϑJ)[`(wK)− `(wJ)].

Proof. If J ⊃ K we have isomorphisms of RI-modules:

HomRI−RK (M · JϑK , N) ∼= HomRI−RJ (M, HomRK (RK , N)) (1.0.6)
∼= HomRI−RJ (M, NRJ )

∼= HomRI−RJ (M, N · JϑK)[`(wK)− `(wJ)]

If J ⊂ K then, setting ν = `(wK)− `(wJ) we have isomorphisms of
RI-modules:

HomRI−RK (M · JϑK , N) ∼=
∼= HomRI−RK (M ⊗RJ RJ , N)[−ν]

∼= HomRI−RJ (M, HomRK (RJ , N))[−ν] (1.0.6)

∼= HomRI−RJ (M, N ⊗ HomRK (RJ [ν], RK)) (1.0.7)

∼= HomRI−RJ (M, N ⊗RK RJ)[ν] (Cor. 3.2.3)

∼= HomRI−RJ (M, N · KϑJ)[`(wK)− `(wJ)] �
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We can now establish the first version of the homomorphism for-
mula.

Theorem 5.2.2. If M ∈ IBJ
BS, N ∈ IFJ

∇ or M ∈ IFJ
∆, N ∈

IBJ
BS then Hom(M, N) is graded free as an RI-module and we have an

isomorphism

Hom(M, N)[−`(wJ)] ∼= 〈ch∆(M), ch∇(N)〉 ·RI

of graded RI-modules.

Proof. Let us first assume that M ∈ IBJ
BS and N ∈ IFJ

∇. Using
Lemma 5.2.1 we see that, as RI-modules

Hom(M · JϑK , N)[−`(wK)] ∼= Hom(M, N · KϑJ)[−`(wJ)].

By (2.2.4) and Theorems 4.1.5 and 4.3.3 we have

〈ch∆(M ·JϑK), ch∇(N)〉 = 〈ch∆(M) ∗J JHK , ch∇(N)〉 =

= 〈ch∆(M), ch∇(N) ∗K KHJ〉 = 〈ch∆(M), ch∇(N · KϑJ)〉

We conclude that the formula is true for (M · JϑK , N) if and only if
it is true for (M, N · KϑJ). It is also clear that it is true for (M, N) if
and only it if it true for any shift of M or N . Thus, without loss of
generality, we may assume that M = IRI = I∆I .

By Lemma 2.2.10 we know

〈ch∆(I∆I), ch∇(N)〉 = 〈v−`(wI) IHI , ch∇(N)〉 = coefficient of IHI in ch∇ N.

Thus, by definition of ch∇, we have

ΓWI
N ∼= 〈ch∆(I∆I), ch∇(N)〉 · I∇I ∼=

It follows that

Hom(I∆I , N)[−`(wI)] = ΓWI
(N)[−`(wI)] = 〈ch∆(I∆I), ch∇(N)〉 · IRI

which settles the case when M ∈ IBJ
BS and N ∈ IFJ

∇.
If M ∈ IFJ

∆ and N ∈ IBJ
BS then identical arguments to those above

allow us to assume that N = I∇I . We have

ΓWIM = 〈ch∆ M, IHI〉 · I∆I

and hence

Hom(M, I∇I)[−`(wI)] = Hom(M, IRI)

= Hom(ΓWIM, IRI)

∼= 〈ch∆ M, IHI〉 · Hom(IRI , IRI)

∼= 〈ch∆ M, ch∇(I∇I)〉 ·RI �
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5.3. Some local results. We would like to generalise the ho-
momophism formula of the previous section to all objects in IBJ .
The crucial point is determining Hom(M, I∇J

p ) and Hom(I∆J
p , N) for

M, N ∈ IBJ . For this we consider various localisations of special bi-
modules, which is the purpose of this section.

Given any reflection t ∈ W let R(t) denote the local ring of V t ⊂ V .
In other words, in R(t) we invert all functions f ∈ R which do not
vanish identically on V t.

The ring R(t) is no longer graded and we will denote by R(t)-mod-R
the category of (R(t), R)-bimodules. The lack of a grading on R(t) means
that we do not know if objects in R(t)-mod-R satisfy Krull-Schmidt,
which explains some strange wording below.

If M, N ∈ R-Mod-R are free as left R-modules, with M finitely
generated we have an isomorphism

HomR(t)−R(R(t) ⊗R M, R(t) ⊗R N) ∼= R(t) ⊗R HomR−R(M, N).

It follows that, with the same assumptions on M and N ,

Ext1
R(t)−R(R(t) ⊗R M, R(t) ⊗R N) ∼= R(t) ⊗R Ext1

R−R(M, N).

Lemma 4.2.1 tells us that that Ext1
R−R(Rx, Ry) is non-zero if and only

if y = rx for some reflection r ∈ T , in which case it is supported on
Grx ∩Grrx. We conclude that

(5.3.1) Ext1
R(t)−R(R(t) ⊗R Rx, R

(t) ⊗R Ry) = 0 unless y = tx.

(Alternatively, one may explicitly split the extension of scalars of the
generator of Ext1(Rx, Rrx) to R(t)-mod-R using a Demazure operator,
if r 6= t.)

Suppose that M ∈ R-Mod-R has a filtration with successive sub-
quotients isomorphic to a direct sum of shifts of Rx, and that no (shift
of) Rx occurs in two different subquotients. By inducting over the
filtration of M and using (5.3.1), we see that R(t) ⊗R M has a decom-
position in which each summand is either isomorphic to R(t) ⊗R Rx or
is an extension between R(t) ⊗R Rx and R(t) ⊗R Rtx.

The next two results makes this decomposition more precise for
special classes of modules.

Lemma 5.3.1. Let I, J ⊂ S be finitary and p ∈ WI \W/WJ be a
double coset. In R(t)-mod-R we have an isomorphism

R(t) ⊗R R(p) ∼=
{ ⊕

x∈p R(t) ⊗R Rx if tp 6= p⊕
x∈p;x<tx R(t) ⊗R Rx,tx if tp = p.

Proof. Note that, by Proposition 1.2.12, either tp = p or tp∩ p =
∅. The lemma then follows by applying R(t)⊗R− to the exact sequence
in Proposition 2.3.4. �
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Proposition 5.3.2. If B ∈ IBJ then R(t)⊗RIB⊗RJ R ∈ R(t)-mod-R
is isomorphic to a direct summand in a direct sum of modules of the
form R(t) ⊗R Rx and R(t) ⊗R Rx,tx with x < tx.

Proof. IF the statement is true for B, then it is true for any direct
summand of B, and hence we may assume that B ∈ IBJ

BS. If B = IRI

then R ⊗RI
IRI ⊗RI R ∼= R(WI) (Theorem 2.4.1) and the necessary

decomposition is provided by Lemma 5.3.1. By the inductive definition
of IBJ

BS it is enough to show that, if the lemma is true for B ∈ IBJ ,
then it is also true for B · JϑK ∈ IBK with J ⊂ K or J ⊃ K. The case
J ⊃ K is trivial, and so we are left with the case J ⊂ K.

The module B⊗RK R is a direct summand in B⊗RJ R⊗RK R and, by
assumption, R(t)⊗RB⊗RJ R is a direct summand in a direct sum of the
modules R(t) ⊗R Rx and R(t) ⊗R Rx,tx with x < tx. Hence it is enough
to show that the statement of the lemma is true for R(t) ⊗R Rx ⊗RK R
and R(t) ⊗R Rx,tx ⊗RK R.

In the first case Rx ⊗RK R ∼= R(xWK) (Theorem 2.4.1 again) and
the decomposition follows again from Lemma 5.3.1 together with the
fact that tx > x.

In the second case there are two possibilities. If tx = xt′ for a
reflection t′ ∈ WK then Rx,tx splits upon restriction to RK (Lemma
4.2.3) and we may apply Lemma 5.3.1 again.

If tx 6= xt′ for any reflection t′ ∈ WK then the sets xWK and txWK

are disjoint. By applying − ⊗RK R to the exact sequence Rx[−2] ↪→
Rx,tx � Rtx and using the identification Rx ⊗RK R ∼= R(WK) we see
that Rx,tx⊗RK R has a filtration with subquotients (a shift of) Rw with
w ∈ xWK or txWK . It follows that we have an isomorphism

R(t) ⊗R Rx,tx ⊗RK R ∼=
⊕

y∈WK

Exy,txy

where Exy,txy is a (possibly trivial) extension of R(t)⊗R Rxy and R(t)⊗R

Rtxy.
To identify Exy,txy we tensor the surjection R(WK) � Ry with the

exact sequence Rx[−2] ↪→ Rx,tx � Rtx to obtain a diagram

Rx ⊗RK R[−2] � � //

����

Rx,tx ⊗RK R // //

����

Rtx ⊗RK R

����
Rxy[−2] � � // Rxy,txy

// // Rtxy.

After tensoring with R(t) the left and right surjections split by Lemma
5.3.1. It follows that Exy,txy is isomorphic to R(t) ⊗R Rxy,txy for all
y ∈ WK and the lemma follows. �

We now come to the goal of this section, which is to relate Hom(I∆J
p , B)

and Hom(B, I∇J
p ) for a singular Soergel bimodule B ∈ IBJ to the nabla

and delta filtrations on B. This provides the essential (and trickiest)
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step in generalising the homomorphism formula for Bott-Samelson bi-
modules to all Soergel bimodules.

The arguments used to establish this relation are complicated and
so we first sketch the basic idea. Let us consider a nabla filtration on
a Bott-Samelson bimodule B. By Theorem 5.2.2 we know the rank
of Hom(I∆J

p , B) in terms of Γ≤p B and a simple calculation confirms

that Hom(I∆J
p , B) and Γ≤p B[−`(p−)] have the same graded rank as left

RI-modules.
Given a morphism α : I∆J

p → B one may consider the image of a

non-zero element of lowest degree in Γ≤p B and one obtains in this way
an injection

Hom(I∆J
p , B)→ Γ≤p B[`(p−)].

One might hope that this maps into a submodule isomorphic to Γ≤p B[−`(p−)],
which would explain the above equality of ranks.

In order to show that this is the case we choose a decomposition

Γ≤p B ∼= P · IRJ
p

and recall that IRJ
p has the structure of a graded algebra compatible

with the bimodule structure. In particular, elements in IRJ
p define

endomorphisms of Γ≤p B (which in general do not come from acting by

an element in RI ⊗ RJ). Given an element m ∈ IRJ
p , we will abuse

notation and denote by mΓ≤p B the image of this endomorphism.

We define an element mp ∈ IRJ
p of degree 2`(p−) and argue (using

localisation) that the above injection lands in

mpΓ
≤
p B[`(p−)] ∼= Γ≤p B[−`(p−)].

Thus the two modules Γ≤p B[−`(p−)] and Hom(I∆J
p , B) are isomorphic.

Remark 5.3.3. If W is a finite one may make the arguments in
this section simpler by considering certain elements (similar to our
φx ∈ R(p)) constructed using Demazure operators. This is discussed in
[So6], Bemerkung 6.7.

We begin by defining the special elements mp ∈ IRJ
p . Recall that,

by definition, the modules IRJ
p are the invariants in R under WK , where

K = I ∩ p−Jp−1
− .

Lemma 5.3.4. The element

mp =
∏
t∈T

tp−<p−

ht ∈ R.

lies in IRJ
p .

Proof. Because xhs = hxsx−1 if x ∈ W (2.1.2) it is enough to show
that if s ∈ I ∩ p−Jp−1

− and t ∈ T with tp− < p−, then (sts)p− < p−.
Choose r ∈ J such that sp− = p−r. We have either (sts)sp− = stp− ≤
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sp− or stp− ≥ sp−. However the latter is impossible as tp− /∈ p.
Similarly, either stp−r ≤ sp−r = p− or stp−r ≥ sp−r and the latter is
again impossible. It follows that (sts)p− ≤ p− as claimed. �

We now come to the main goal of this section.

Theorem 5.3.5. Let I, J ⊂ S be finitary, B ∈ IBJ and p ∈ WI \
W/WJ . We have isomorphisms

(1) Hom(IRJ
p , B) ∼= Hom(IRJ

p , Γ≤p B)[−2`(p−)],

(2) Hom(B, IRJ
p ) ∼= Hom(Γ≥p B, IRJ

p )[−2`(p−)].

The proof depends on a lemma which we establish by considering
various localisations of B. Given a subset A ⊂ W we extend the
notion to sections supported in GrA to modules M ∈ R(t)-mod-R as
follows. Writing IA for the ideal of functions vanishing on GrA, we
define ΓAM to be the submodule of elements annihilated by 〈IA〉, the
ideal generated by IA in R(t) ⊗R.

Lemma 5.3.6. For any pair of morphisms

M → B → IRJ
p

with M ∈ IFJ
∆ such that Γ≥pM = M , the composition lands in mp

IRJ
p .

Proof. As in Lemma 2.4.2 let us regard IRJ
p as the subalgebra

of WI × WJ -invariants in R(p). Using Theorem 2.4.1 we obtain, for
all t ∈ T , a commutative diagram (where the vertical inclusions are
inclusions of abelian groups):

m ∈M // B // IRJ
p

∩ ∩ ∩
R⊗RI M ⊗RJ R // R⊗RI B ⊗RJ R // R(p) 3 (fx)

∩ ∩ ∩
R(t) ⊗RI M ⊗RJ R // R(t) ⊗RI B ⊗RJ R // R(t) ⊗R R(p)

Denote by f = (fx) the image of m ∈ M in R(p) as shown. By
WI ×WJ -invariance, it is enough to show that fp− is divisible by mp.

To this end, let t ∈ T satisfy tp− < p−. Considering elements
supported on Grp− and Grtp− and using Lemma 5.3.1 and Proposition
5.3.2 we see that the bottom row admits a morphism to a composition
of the form

R(t) ⊗R Rp− →
⊕

R(t) ⊗R Rtp−,p− → R(t) ⊗R Rp− .

The composition of any two such maps must land in htR
(t) ⊗R Rp− . It

follows that
fp− ∈ R ∩

⋂
t∈T

tp−<p−

htR
(t) ⊗R R = mpR

and the lemma follows. �
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Proof of Theorem 5.3.5. First note that if the theorem is true
for a module B, then it is true to any direct summand of B. Thus we
may assume without loss of generality that B ∈ IBJ

BS.
We begin with 1). Let α : IRJ

p → B be a morphism. As supp IRJ
p =

IGrJ
p the image of α is contained in Γ≤pB and, by composing with the

quotient map we obtain a map IRJ
p → Γ≤p B. This yields a morphism

Φ : Hom(IRJ
p , B)→ Hom(IRJ

p , Γ≤p B).

As B has a nabla flag, any element of B has support consisting of a
union of IGrJ

q for q ∈ WI\W/WJ by Lemma 2.5.3. It follows that Φ is
injective.

Let us now fix an isomorphism

Γ≤p B ∼= P · IRJ
p .

By Lemma 5.3.6 above, given any α ∈ Hom(IRJ
p , B) the image of Φ(α)

is contained in P ·mp
IRJ

p
∼= Γ≤p B[−2`(p−)]. Thus we obtain an injection

(5.3.2) Hom(IRJ
p , B)→ Hom(IRJ

p , Γ≤p B)[−2`(p−)].

We compare ranks in order to show that this is an isomorphism.
Let us write g ∈ N[v, v−1] for the coefficient of IHJ

p in ch∇(N)

written in the standard basis. By Theorem 5.2.2, we have, as left RI-
modules,

Hom(IRJ
p , B)[`(p−)− `(wJ)] ∼= Hom(I∆J

p , B)[−`(wJ)]

∼= 〈v`(p−)−`(p+) IHJ
p , ch∇(B)〉 ·RI

∼= g
π(p)

π(J)
·RI .

One the other hand,

Hom(IRJ
p , Γ≤p B)[−`(p−)− `(wJ)] ∼=

∼= g · I∇J
p [−`(p−)− `(wJ)] (Cor. 2.4.4)

= g · IRJ
p [`(p+)− `(p−)− `(wJ)]

= g · IRJ
p [`(wI)− `(wI,p,J)] (1.2.1)

= g
π(I)

π(I, p, J)
·RI (Cor. 2.1.4)

= g
π(p)

π(J)
·RI . (1.2.3)

Thus (5.3.2) is an isomorphism and 1) follows.
We now turn to 2) which, of course, is similar. Let α : B → IRJ

p

be a morphism. For support reasons, α annihilates Γ>pB and hence
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factorises to yield a map Γ≥p B → IRJ
p . We obtain in this way an

injection

Φ : Hom(B, IRJ
p )→ Hom(Γ≥p B, IRJ

p ).

Let us fix an isomorphism

Γ≥p B ∼= P · IRJ
p

for some P ∈ N[v, v−1]. By the above lemma if α ∈ Hom(B, IRJ
p ) then

the image of Φ(α) is contained in P · mp
IRJ

p and thus we obtain an
injection

Hom(B, IRJ
p )→ Hom(Γ≥p B, IRJ

p )[−2`(p−)].

Again we compare ranks. Choose h ∈ N[v, v−1] such that Γ≥p B ∼=
h · I∆J

p . By Theorem 5.2.2 we have isomorphisms of left RI-modules:

Hom(B, IRJ
p )[`(p+)− `(wJ)] ∼= Hom(B, I∇J

p )[−`(wJ)]

∼= h
π(p)

π(J)
·RI .

On the other hand

Hom(Γ≥p B,IRJ
p )[−2`(p−) + `(p+)− `(wJ)] ∼=
∼= Hom(h · I∆J

p , IRJ
p )[−2`(p−) + `(p+)− `(wJ)]

∼= h · IRJ
p [`(p+)− `(p−)− `(wJ)] (Cor. 2.4.4)

∼= h
π(p)

π(J)
·RI

which completes the proof of 2). �

5.4. The general homomorphism formula and classifica-
tion. We can now prove the natural generalisation of Theorem 5.2.2
to all Soergel bimodules. For the duration of this section fix I, J ⊂ S
finitary.

Theorem 5.4.1. If M ∈ IBJ , N ∈ IFJ
∇ or M ∈ IFJ

∆, N ∈ IBJ

then Hom(M, N) is graded free as an RI-module and we have an iso-
morphism

Hom(M, N)[−`(wJ)] ∼= 〈ch∆(M), ch∇(N)〉 ·RI

of graded RI-modules.

Proof. We handle first the case M ∈ IFJ
∆ and N ∈ IBJ . We

will prove the theorem via induction on the length of a delta flag of
M . The base case where M ∼= I∆J

p for some p ∈ WI \W/WJ follows
by essentially the same calculations as those in the proof of Theorem



76 3. SINGULAR SOERGEL BIMODULES

5.3.5. Namely, if we write g for the coefficient of IHJ
p in ch∇(N), we

have

Hom(I∆J
p , N) ∼= Γ≤p N [−`(p−)]

∼= g · IRJ
p [`(p+)− `(p−)] (Theorem 5.3.5)

∼= g
π(I)

π(I, p, J)
·RI [`(wJ)]

∼= g
π(p)

π(J)
·RI [`(wJ)]

∼= 〈ch∆(I∆J
p ), ch∇(N)〉 ·RI [`(wJ ].

For the general case we may choose p ∈ WI \W/WJ minimal with
ΓpM 6= 0 and obtain an exact sequence

(5.4.1) Γ6=pM ↪→M � ΓpM.

By the minimality of p, both Γ 6=pM and ΓpM are in IFJ
∆ and

ch∆ M = ch∆(Γ6=pM) + ch∆(ΓpM).

As N ∈ IBJ there exists some Ñ ∈ IBJ
BS in which N occurs as a direct

summand. The homomorphism formula for Bott-Samelson modules

(5.2.2) tells us that Hom(−, Ñ) is exact when applied to (5.4.1). Hence
the same is true for Hom(−, N) and we conclude by induction that we
have isomorphisms of graded RI-modules:

Hom(M, N) ∼= Hom(Γ 6=pM, N)⊕ Hom(ΓpM, N)

∼= 〈ch∆(M), ch∇(N) ·RI [`(wJ)].

The case when M ∈ IBJ and N ∈ IFJ
∇ is handled similarly. If N is

isomorphic to I∇J
p for some p ∈ WI \W/WJ , then similar calculations

to those in Theorem 5.3.5 verify the theorem in this case. For general
N we choose p minimal with ΓpN 6= 0 and obtain an exact sequence

ΓpN ↪→ N � N/ΓpN.

Applying Hom(M,−) this stays exact for the same reasons as above,
and the isomophism in the theorem follows by induction. �

We now come to the classification.

Theorem 5.4.2. For every p ∈ WI\W/WJ there is, up to isomor-
phism, a unique indecomposable module IBJ

p ∈ IBJ satisfying

(1) supp IBJ
p ⊂ IGrJ

≤p;

(2) Γp(IBJ
p ) ∼= I∇J

p .

The bimodule IBJ
p is self-dual and any indecomposable object in IBJ is

isomorphic to IBJ
p [ν] for some p ∈ WI\W/WJ and ν ∈ Z

In keeping with our notational convention, if I = J = ∅ we will
write Bw instead of IBJ

w.
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Proof. Choose p ∈ WI \W/WJ and let (I, pi, Ji)0≤i≤n be a right
reduced translation sequence with end-point (I, p, J) (see Section 1.3).
Consider the module

B̃ = I∇I · J0ϑJ1 · J1ϑJ2 · · · · · Jn−1ϑJn ∈ IBJ .

By Theorem 4.1.5 and Proposition 2.2.7 we have

ch∇ B̃ = J0HJ1 ∗J1

J1HJ2 ∗J2 · · · ∗Jn−1

Jn−1HJn = IHJ
p +

∑
q<p

λq
IHJ

q .

Hence B̃ satisfies conditions 1) and 2) in the theorem. Let IBJ
p te the

unique indecomposable summand of B̃ with non-zero support on IGrJ
p .

Clearly IBJ
p also satisfies conditions 1) and 2).

Note that B̃ is self-dual (because I∇I is and the translation functors
commute with duality by Proposition 4.3.4). As IBJ

p is the only direct

summand of B̃ with support containing IGrJ
p , it follows that IBJ

p is also
self-dual.

Let M and N be objects in IBJ and assume that p is maximal for
both modules with ΓpM 6= 0 and ΓpN 6= 0. Using Theorem 5.4.1 we
see that Hom(M,−) is exact when applied to the sequence

Γ6=pN ↪→ N � ΓpN.

In other words we have a surjection

Hom(M, N) � Hom(M, ΓpN) = Hom(ΓpM, ΓpN).

By symmetry, we also have a surjection

Hom(N, M) � Hom(ΓpN, ΓpM).

These surjections tell us that we can lift homomorphisms between ΓpM
and ΓpN to M and N .

Now assume that M and N are indecomposable. After shifting M
and N if necessary we may find α : ΓpM → ΓpN and β : ΓpN → ΓpM
of degree zero, such that β◦α is the identity on a fixed direct summand
I∇J

p in ΓpM and zero elsewhere. By the above arguments we may find

lifts α̃ : M → N and β̃ : N → M of α and β of degree zero. As M is
indecomposable and b̃ ◦ α̃ is not nilpotent it must be an isomorphism.
Thus ΓpM ∼= I∇J

p and M is isomorphic to a direct summand of N .
However N is indecomposable by assumption and thus M and N are
isomorphic.

We conclude that, for any fixed p ∈ WI\W/WJ , there is at most one
isomorphism class (up to shifts) of indecomposable bimodules B ∈ IBJ

such that p is maximal with ΓpB 6= 0. The theorem then follows as we
already know that IBJ

p satisfies these conditions. �

The classification allows us to prove that indecomposable Soergel
bimodules stay indecomposable when translated out of the wall:
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Proposition 5.4.3. Let K ⊂ I and L ⊂ J be finitary subsets of S
and

qu : WK\W/WL → WI\W/WJ

be the quotient map. Choose p ∈ WI \W/WJ and let q be the unique
maximal element in qu−1(p).

(1) In RK-Mod-RL we have an isomorphism

RK ⊗RI
IBJ

p ⊗RJ RL ∼= KBL
q .

(2) In RI-Mod-RJ we have an isomorphism

RI (KBL
q )RJ

∼=
π̃(I)π̃(J)

π̃(K)π̃(L)
· IBJ

p .

Proof. For the course of the proof let use define

P =
π̃(I)π̃(J)

π̃(K)π̃(L)
.

The composition of inducing to RK-Mod-RL and restricting to RI-Mod-RJ

always produces a factor of P . To get started, note that Γp(IBJ
p ) ∼= I∇J

p

and hence (using Proposition 4.1.6)

Γqu−1({≤p})(R
K ⊗RI

IBJ
p ⊗RJ RL)/Γqu−1({<p})(R

K ⊗RI
IBJ

p ⊗RJ RL) ∼=
∼= RK ⊗RI

I∇J
p ⊗RJ RL

The latter is isomorphic to a shift of R(p)WK×WL by Theorem 2.4.1 and
hence is indecomposable. By the classification, we may write

(5.4.2) RK ⊗RI
IBJ

p ⊗RJ RL ∼= KBL
q ⊕M

for some M ∈ KBL whose support is contained in KGrL
qu−1({<q}). It

follows that

Γqu−1({≤p})(
KBL

q )/Γqu−1({<p})(
KBL

q ) ∼= RK ⊗RI
I∇J

p ⊗RJ RL

This tells us (again by Proposition 4.1.6) that

Γ≤p(RI (KBL
q )RJ )/Γ<p(RI (KBL

q )RJ ) ∼= RI (RK ⊗RI
I∇J

p ⊗RJ RL)RJ

∼= P · I∇J
p

Therefore we may write

RI (KBL
q )RJ

∼= P · IBJ
p ⊕N

for some N ∈ IBJ . Restricting (5.4.2) to RI-Mod-RJ yields

P · IBJ
p
∼= RI (KBL

q )RJ ⊕ RIMRJ
∼= P · IBJ

p ⊕ RIMRJ ⊕N

whence M = N = 0. Both claims then follow. �
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5.5. Characters and Soergel’s conjecture. In this section we
turn our attention to the characters of Soergel bimodules. We will
see in the following theorem that the nabla character of a singular
Soergel bimodule is determined by its delta character (and vice versa).
Therefore we simplify notation and define

ch(B) = ch∆(B)

for all Soergel bimodules B.

Theorem 5.5.1. Let I, J and K be finitary subsets of S.

(1) For all B ∈ IBJ we have ch∇(B) = ch∆(B).
(2) We have a commutative diagram

IBJ × JBK
−⊗

RJ− //

ch× ch
��

IBK

ch
��

IHJ × JHK
−∗J− // IHK

.

(3) The set {ch(IBJ
p ) | p ∈ WI\W/WJ} builds a self-dual basis for

IHJ .

Proof. We begin with 1). As ch∇(IRI) = ch∆(IRI) we may use
Theorems 4.1.5 and 4.3.3 to conclude that the statement is true for all
Bott-Samelson bimodules. We now use induction over the Bruhat order
on WI\W/WJ to show that ch∇(IBJ

p ) = ch∆(IBJ
p ) for all p ∈ WI\W/WJ ,

which implies the claim. If p contains the identity, then IBJ
p is Bott-

Samelson and so the claim is true. For general p ∈ WI\W/WJ we may
(as in the proof of Theorem 5.4.2) find a Bott-Samelson module N such

that N ∼= IBJ
p ⊕ Ñ and the support of Ñ is contained in IGrJ

<p. We
have

ch∇(IBJ
p ) + ch∇(Ñ) = ch∇(N) = ch∆(N) = ch∆(IBJ

p ) + ch∆(Ñ).

By induction ch∇(Ñ) = ch∆(Ñ) and the claim follows.
Statement 2) follows by a very similar argument. It is clear from

Theorem 4.3.3 that the statement is true for Bott-Samelson bimodules.
Let us fix M ∈ IBJ . It is enough to show that ch(M ⊗RJ

JBK
p ) =

ch(M) ∗J ch(JBK
p ) for all p ∈ WJ \W/WK . Again we induct over the

Bruhat order on WJ\W/WK . If p is minimal then JBK
p is Bott-Samelson

and the claim follows by Theorem 4.3.3. If p ∈ WJ\W/WK is arbitrary
then we may find, as above, a Bott-Samelson bimodule N ∈ JBK

BS

which decomposes as N ∼= JBK
p ⊕ Ñ with the support of Ñ contained

in IGrJ
<p. We have

ch(M⊗RJ
JBK

p ) + ch(M ⊗RJ Ñ) = ch(M ⊗RJ N) =

= ch(M) ∗J ch(N) = ch(M) ∗J ch(JBK
p ) + ch(M) ∗J ch(Ñ).
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By induction ch(M ⊗RJ Ñ) = ch(M) ∗J ch(Ñ) and the claim follows.
We now turn to 3). By Theorem 5.4.2, we have

ch(IBJ
p ) = IHJ

p +
∑
q<p

λq
IHJ

q

for some λq ∈ N[v, v−1]. It follows that the set {ch(IBJ
p )} gives a basis

for IHJ . The self-duality of ch(IBJ
p ) follows from the self-duality of IBJ

p

and Proposition 4.3.5:

ch(IBJ
p ) = ch∆(DIBJ

p ) = ch∇(IBJ
p ) = ch(IBJ

p ). �

Given the theorem it is desirable to understand this basis {ch(IBJ
p )}

for p ∈ WI \W/WJ more explicitly. We will finish this chapter by
recalling Soergel’s conjecture on the characters of the indecomposable
bimodules in B (recall that we write B instead of ∅B∅).

In [So6] Soergel considers the full subcategory of R-Mod-R con-
sisting of all objects isomorphic to direct sums, summands and shifts
of objects of the form

(5.5.1) R⊗Rs R⊗Rt · · · ⊗Ru R

where s, t, . . . , u ∈ S are simple reflections. A priori, this category
may not contain all objects of B. However using the same arguments
as in the proof of Theorem 5.4.2 one can show that one obtains all
indecomposable objects in B as direct summands of bimodules of the
form (5.5.1) for reduced expressions st . . . u. Thus Soergel’s category is
precisely B.

The following is Vermutung 1.13 in [So6].

Conjecture 5.5.2. (Soergel) For all w ∈ W we have ch(Bw) =
Hw.

If Soergel’s conjecture is true then, by Proposition 5.4.3,

ch(R⊗RI
IBJ

p ⊗RJ R) = ch(Bp+
) = Hp+

.

By Theorem 5.5.1, ch(R ⊗RI
IBJ

p ⊗RJ R) is equal to ch(IBJ
p ) regarded

as an element of H. Hence

ch(IBJ
p ) = IHJ

p .



CHAPTER 4

Soergel bimodules in low rank

In this chapter we determine the characters of some indecomposable
Soergel bimodules for finite, low rank Coxeter groups. We concentrate
on the non-singular situation (i.e. I = J = ∅) however (as we have
seen in Section 5.5 in the last chapter), verifying Soergel’s conjecture
in this case determines the characters of all singular Soergel bimodules.

If the ground field is C all the characters we discuss below (with the
exception of type H3 and H4) are known by geometric methods (see
[So5]). However, as we mention in the introduction, it is also possible
to define Soergel bimodules in positive characteristic and finding an
approach to the characters in this situation seems to be a difficult
problem. Here we present a simple, combinatorial method by which
many characters can be determined if one knows the W -graph of the
corresponding Coxeter system.

The idea is that the basis {ch(Bx) | x ∈ W} of H given by the
characters of indecomposable Soergel bimodules is self-dual and has
positivity properties shared by the Kazhdan-Lusztig basis. By expand-
ing products of the form Hs ∗ ch(Bw) and ch(Bw) ∗Hs and using the
fact that the result must consist of a positive combination of bimodule
characters, one may often conclude that ch(Bx) = Hx inductively.

In order to carry this out it is essential to know how Hs acts on
the Kazhdan-Lusztig basis from the left and right. This precisely the
information provided by the W -graph of the Coxeter system (W, S).

The structure of this chapter is as follows. In Section 1 we recall the
definition of the W -graph. In Section 2 we define a subset σ(W ) ⊂ W
based on the W -graph and show that ch(Bx) = Hx if x ∈ σ(W ).
In the last Section 3 we discuss the results of computer calculations
determining the subset σ(W ) ⊂ W for all finite Coxeter groups of rank
less than or equal to 6.

1. The W -graph

Let (W, S) be a Coxeter system. In Section 2 of Chapter 2 we
defined the Hecke algebra H, its standard basis {Hw | w ∈ W} and its
Kazhdan-Lusztig basis {Hw | w ∈ W}. If x ≤ w we defined µ(x, w)
to be the coefficient of v in the Kazhdan-Lusztig polynomial hx,w and

81
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stated the multiplication formula:

(1.0.2) HsHw =

{
(v + v−1)Hw if sw < w
Hsw +

∑
x<w;sx<x µ(x, w)Hx if sw > w.

We want to explain how one may simplify this formula slightly.
Given w ∈ W we define the left and right descent set to be

L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}.
Let us now extend µ(x, y) so that µ is symmetric and µ(x, y) = 0 if x
and y are not comparable in the Bruhat order. If w ≤ x, sw > w and
sx < x then hw,x = vhsw,x and hence µ(w, x) 6= 0 only when w = sx.
We may therefore rewrite (1.0.2) as follows (see [KL1]):

HsHw =

{
(v + v−1)Hsw if s ∈ L(w)∑

x∈W ;s∈L(x) µ(x, w)Hx if s /∈ L(w).
(1.0.3)

Similarly one has

HwHs =

{
(v + v−1)Hsw if s ∈ R(w)∑

x∈W ;s∈R(x) µ(x, w)Hx if s /∈ R(w).
(1.0.4)

It follows that all the information about the action of Hs on the left
and right on the Kazhdan-Lusztig basis may be encoded in a labelled
graph, known as the W -graph. The vertices correspond to the elements
of W and are labelled with the left and right descent sets. There is an
edge between x and y ∈ W if µ(x, y) 6= 0, in which case it is labelled by
µ(x, y). The important point for us is that, in order to know the action
of Hs on the Kazhdan-Lusztig basis, it is only necessary to know the
W -graph and not all Kazhdan-Lusztig polynomials. This significantly
simplifies the necessary computer calculations in Section 3.

2. Separated Elements

Let V be a reflection faithful representation of a Coxeter system
(W, S), let B denote the category of (non-singular) Soergel bimodules
and choose representatives {Bw | w ∈ W} for each isomorphism class
of indecomposable Soergel bimodule (normalised as in Theorem 5.4.2).
We would like to show that their characters are given by the Kazhdan-
Lusztig basis. Using Theorem 5.5.1 one sees that the set {ch(Bw) | w ∈
W} yields a self-dual basis of H with certain positivity properties which
are shared by the Kazhdan-Lusztig basis. Sometimes this allows one
to conclude that ch(Bw) = Bw. This is the motivation behind the set
σ(W ) to be defined below.

Example 2.0.3. As motivation, let us consider some examples:

(1) Let x ∈ W and suppose that sx < x, HsHsx = Hx and
ch(Bsx) = Hsx. We know that Bx is a direct summand of
Bs ⊗R Bsx with self-dual character. Hence ch(Bsx) = Hsx by
the uniqueness of the Kazhdan-Lusztig basis.
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(2) Fix x ∈ W and suppose that ch(Bsx) = Hsx for all s ∈ L(x).
Suppose further that the only Kazhdan-Lusztig basis element
that appears with non-zero coefficient in all expressions HsHsx

with s ∈ L(x) is Hx. Then, using the fact that Bx occurs as a
direct summand in Bs ⊗R Bsx for all s ∈ L(x), it follows that
ch(Bx) = Hx.

We start with some definitions. Given an element h =
∑

axHx ∈ H
we define the Kazhdan-Lusztig support to be the set

suppKL(h) = {x | ax 6= 0}.
We say that h is KL-supported in degree 0 if all ax ∈ Z.

Given h, h′ ∈ H we may write the difference h′− h in the standard
basis as

h′ − h =
∑

axHx.

If all ax ∈ N[v, v−1] we write h ≤ h′. Note that if M is a direct
summand of N ∈ B then ch(M) ≤ ch(N).

Lemma 2.0.4. Suppose M is a direct summand of a Soergel bimod-
ule N whose character is self-dual and KL-supported in degree 0. Then
the character of M is also self-dual, KL-supported in degree zero and

suppKL(ch(F)) ⊂ suppKL(ch(G)).

Proof. We may write

ch(M) =
∑

axHx for some ax ∈ Z[v, v−1].

Now M occurs as a direct summand of the self-dual N whose character
is KL-supported in degree zero. Thus:

ch(N) ∈
⊕
x∈W

Z[v]Hx =
⊕
x∈W

Z[v]Hx

ch(M) ≤ ch(N) and ch(M) ≤ ch(N)

Hence ax ∈ Z for all x ∈ W and the last claim follows by considering
the coefficients of v0 in ch(N) =

∑
bxHx. �

Given a subset X ⊂ W define
sX = {x ∈ X | sx > x} and Xs = {x ∈ X | xs > x}.

We now define a function fW : Y → P(W ) from some subset Y ⊂
W to the power set of W . This function and its domain are defined
inductively as follows:

(1) fW (id) = {id}.
(2) Suppose we have defined fW on all y < x. Then it is possible

to define fW on x if there exists s ∈ L(x) or t ∈ R(x) such
that either

sfW (sx) = fw(sx) or fW (xt)t = fw(xt).
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In this case we define fW (x) to be the set:

⋂
s∈L(x)

 ⋃
w∈sfW (sx)

suppKL(HsHw)

∩ ⋂
t∈R(x)

 ⋃
w∈fW (xt)t

suppKL(HwH t)


Remark 2.0.5. The condition in the definition for fW to be defined

at x ∈ W may seem a strange. It is one way to force ch(Bx) to be
supported in degree zero, which is crucial to our argument below. In all
examples that we have considered fW is defined on all of W . However
we see no reason why this should be true in general.

Definition 2.0.6. If fW is defined on x ∈ W and fW (x) = {x}
we say that x is separated. The set of all separated elements will be
denoted by σ(W ).

Example 2.0.7. Let W be a dihedral group

Dn = 〈s, t | s2 = t2 = (st)n = id〉.
If (st)m (resp. (st)ms) is not the longest element then

fW ((st)m) = {(st)m, (st)m−1, . . . , st}
fW ((st)ms) = {(st)ms, (st)m−1s, . . . , s}

and similarly for (ts)m and (ts)mt. For the longest element w0 one has

fW (w0) = {w0}.
It follows that the separated elements are {id, s, t, st, ts, w0}. In partic-
ular, A2 and A1 × A1 are the only rank two Coxeter groups in which
σ(W ) = W .

The following proposition shows the usefulness of the set σ(W ):

Proposition 2.0.8. If fW is defined on x ∈ W then ch(Bx) is
KL-supported in degree 0 and

suppKL(ch(Bx)) ⊂ fW (x).

In particular, if x ∈ σ(W ) is separated we have ch(Bx) = Hx.

Proof. Clearly ch(Bid) = H id and so we may assume by induction
that supp(ch(Bw)) ⊂ fW (w) for all w < x, where x ∈ W is some
element on which fW is defined. Without loss of generality we may
assume, by the indutive definition of fW above, that there exists some
s ∈ L(x) so that sfW (sx) = fW (sx). Hence, by (1.0.2), the character
of Bs ⊗R Bsx = Hs ∗ ch(Bsx) is KL-supported in degree zero.

We may now apply Lemma 2.0.4 to conclude that ch(Bx) is KL-
supported in degree zero. As Bx is a direct summand of all Bt ⊗ Btx

for t ∈ L(x) we conclude (again using Lemma 2.0.4) that

suppKL(ch(Fx)) ⊂
⋃

w∈tfW (tx)

suppKL(H tHw).
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(We may ignore those w /∈ tfW (tx) because we know that ch(Btx) is
supported in degree zero, hence so is ch(Bw), and so they make no
contribution.) Similarly, if t ∈ R(x) then

suppKL(ch(Bx)) ⊂
⋃

w∈fW (xt)t

suppKL(HwH t).

Taking the intersection over these conditions yields fW (x) and the
proposition. �

3. Results of Computer Calculations

In this section we give some examples of the sets σ(W ) ⊂ W for
finite, low rank Coxeter groups. As is clear from the definition of
fW and the multiplication formulas in Section 1, the only information
needed to calculate σ(W ) and fW is the Weyl group W together with its
W -graph. However no general description of the W -graph is known (for
descriptions of some subgraphs see [LS] and [Ke] and for a description
of the computational aspects of the problem see [dC2]).

Thus, in order to calculate fW and σ(W ) we have to restrict our-
selves to examples. This involves two steps:

(1) calculation of the W -graph of (W, S);
(2) calculation of the function fW using the W -graph.

Step 1) is computational quite difficult. Luckily there exists the pro-
gram Coxeter written by Fokko du Cloux [dC1], which calculates the
W -graph very efficiently.1 Step 2) is then relatively straightforward.
A crude implementation in Magma (whose routines for handling Cox-
eter groups proved very useful) as well as the W -graphs obtained from
Coxeter are available at:

home.mathematik.uni-freiburg.de/geordie/torsion/

This site also contains a complete description of the sets σ(W ) and fW

for all examples discussed below.
By definition fW (w) = {w} if and only if w ∈ σ(W ). If fW (w) 6=

{w} then fW (w) is a subset of W containing w as a maximal element.
Thus, in order to know fW is is enough to know the sets fW (w) for all
w /∈ σ(W ). We will refer to these sets as the critical sets and call the
maximal element w the index of set fW (w). For convenience we will
list the index first.

Thus for example, a listing

{w, x}
means that w is the index, fW (w) = {w, x} and either

ch(Bw) = Hw or ch(Bw) = Hw + λHx for some λ ∈ N.

1Although the task of calculating the W -graph is computationally orders of
magnitude more difficult than the calculation of the function fW , for any given
Coxeter group our program was always slower than Fokko’s!
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Because of invariance properties of the W -graph with respect to
diagram automorphisms and inversion the sets σ(W ) and {fW (w)|w /∈
σ(W )} are invariant under these operations. Hence, when listing crit-
ical pairs we will choose a representative of each orbit under inversion
and any diagram automorphisms.

3.1. An, n ≤ 6. Here σ(W ) = W . Thus, in any characteristic in
which one may define and classify Soergel bimodules one has ch(Bw) =
Hw for all w ∈ W .

3.2. A7. Here 9 of the 40 320 elements in W do not lie in σ(W ). We
display the elements in string and diagram form. Recall that the string
form of a permutation w ∈ Symn is the sequence w(1)w(2) . . . w(n).
The critical sets (up to inversion and the diagram autmorphism s1 7→
s7, s2 7→ s6 etc.) are shown in Figure 1. Interestingly, the indices of

p1 =

 84627351
,

43218765


p2 =

{
57813462

,
15432876

}

p3 =

{
62845173

,
21654387

}

p4 =

{
46718235

,
14327658

}

p5 =

{
56781234

,
21654387


p6 =

{
78345612

,
43218765


Figure 1. Critical Sets in A7

p4 and p5 have already appeared in Kazhdan-Lusztig combinatorics.
They are hexagon permutations as defined by Billey and Warrington
[BW]. In [Bra] Braden has investigated the intersection cohomology
complex in SL8(C)/B corresponding to the index of p5 and reports
that the intersection cohomology complex over Z has 2-torsion at the
T -fixed point corresponding to the permutation 15372648.
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We believe (very tentatively) to have an argument that shows that
ch(Bw) = Hw for w the index in pi for i = 1, 2, 3, 4. Hence p5 and
p6 are the only remaining cases in A7. Interesting, these permutations
are obtained by “doubling” the indices of the two singular Schubert
varieties in SL4(C)/B:

// //

3.3. B3 and B4. We describe the function fW for B4. The ordering
of the generators is as follows:

s t u v

There are seven elements of W which do not lie in σ(W ). The critical
sets are:

p1 = {vuv, v}
p2 = {uvu, u}
p3 = {vutvuv, uvuv}
p4 = {vutsvutvuv, utvutvuv}
p5 = {sutvutsvu, suvuv}
p6 = {stsuvuts, stsv}
p7 = {stsutvutsvut, stsuts}

Note that p1, p2 and p3 all lie in the parabolic subgroup isomorphic to
B3 and describe fW on the 3 elements of W of type B3 which don’t
lie in σ(W ) in this case. In Example 2.0.7 we have already seen the
existence of the sets p1 and p2.

3.4. B5 and B6. In B5, 21 of the 3840 elements of W do not lie
in σ(W ). In B6, 228 of the 46080 elements do not lie in σ(W ). In both
cases this is less than 1% of all elements.

3.5. D4. We label our generators s, t, u and v of W as follows:

u
��

s t

v
>>

Here 4 of the 192 elements of D4 are not in σ(W ). Representatives for
the critical sets are:

p1 = {sutvtsu, suv}
p2 = {stsuvts, sts}
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The critical set p1 is stable under the automorphism s 7→ u 7→ v 7→ s
and the orbit of p2 gives the other three sets. Braden has discovered 2-
torsion in intersection cohomology of the Schubert variety correspond-
ing to the index in p1 at the point suv, which is a nice coincidence with
our results.

3.6. D5 and D6. In D5, 15 of the 1920 elements do not lie in
σ(W ). In D6, 107 of the 23040 elements in D6 do not lie in σ(W ). In
both cases these correspond to less than 1% of all elements.

3.7. E6. Here 691 of the 51840 elements of W (roughly 1%) do not
lie in σ(W ).

3.8. F4. In F4, 44 of the 1152 do not lie in σ(W ). This consists of
almost 4% of all elements.

3.9. G2. In this case we have already calculated σ(W ) in Example
2.0.7. Here we obtain nothing new. If W = 〈s, t | s2 = t2 = (st)6 = 1〉
then σ(W ) = {1, s, t, st, ts, w0}. In this case direct arguments may to
used to verify that, in fact, ch(Bw) = Hw for all w ∈ W (see [So6]).

3.10. H3 and H4. In H3, 8 of the 120 elements do not lie in σ(W ).
In H4, 1021 of the 14400 elements do not lie in σ(W ). This high
percentage seems to be due to the large dihedral subgroups.

3.11. Further Calculations. The order of the group seems to
be the greatest obstacle to further computer calculations. It would
be interesting to know how many elements in A8 do not lie in σ(W )
however this computation is out of reach at the moment (Coxeter can
calculate the W -graph in a few hours, and it is 88MB). It would also
be interesting to extend these calculations to the fundamental box of
low rank affine Weyl groups. By recent results of Fiebig [Fie4], this
situation has strong connections to the Lusztig conjecture.
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100, Soc. Math. France, Paris (1982), 5–171.

[BGG] I. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Schubert cells, and the
cohomology of the spaces G/P , Uspehi Mat. Nauk 28 (1973), no. 3(171),
3–26.

[BL] J. Bernstein, V. Lunts, Equivariant sheaves and functors, volume 1578
of Lecture Notes in Mathematics, Springer-Verlag, Berlin (1994)
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les grassmanniennes. Young tableaux and Schur functors in algebra and
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[Li2] N. Libedinsky, Équivalences entre les représentations de base dans la
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