Singular Soergel bimodules

Dissertation zur Erlangung des Doktorgrades
der Fakultéat fiir Mathematik und Physik
der Albert-Ludwigs-Universitat
Freiburg im Breisgau

vorgelegt von

Geordie Williamson

Februar 2008



Dekan: Prof. Dr. Jorg Flum

1. Gutachter: Prof. Dr. Wolfgang Soergel
2. Gutachter: Prof. Dr. Raphaél Rouquier (Oxford University)

Datum der Promotion: 9. Mai, 2008



To Markus






Contents

[Chapter 1. Introduction|

D oung,

[List of important notation|

[Chapter 2. Coxeter Groups and Hecke Algebras|

[1.  Coxeter groups|

[1.1.  Fundamental properties|

[1.2. Parabolic subgroups and double cosets|

[1.3. "Translation sequences|

[2.  The Hecke algebra and category]

[2.1. 'T'he Hecke algebra and Kazhdan-Lusztig basis|
[2.2. The Hecke category|

[Chapter 3.  Singular Soergel Bimodules|

(1. Bimodules and homomorphisms|

[2.  Invariants, graphs and standard modules|

[2.1.  Reflection faithtul representations and invariants|
[2.2. Singular standard modules|

[2.3.  Enlarging the regular functions|

2.4, Standard modules and extension of scalars|

[2.0.  Support|

[3.  Equivariant Schubert calculus|

[3.1.  Demazure operators|

3.2. ualit

3.3.  Demazure operators on R(X)|

4. Flags, characters and translation|

[4.1.  Objects with nabla flags and translation|

[4.2. Vanishing and splitting

[4.3. Delta flags and duality]

[>.  Singular Soergel bimodules and their classification
[5.1. Singular Bott-Samelson and Soergel bimodules|
[5.2. Homomorphisms between Bott-Samelson bimodules|
0.3, Some local results

[5.4. "The general homomorphism formula and classification|
[5.5.  Characters and Soergel’s conjecture|

[Chapter 4. Soergel bimodules in low rank|

(1. The W-graphl

12
13

15
15
15
16
20
22
22
23

31
32
34
34
36
37
42
45
47
48
49
50
54
95
60
63
67
67
68
70
75
79

81
81



CONTENTS

[2. Separated Elements|

[3.  Results of Computer Calculations|

Bl A, n<g

I33 B‘; and B4|
[3.4.  Bs and By
3.5. Dy
[3.6.  Ds and Dy
B.7._Ed
B.8.__F

BY. Gy
I31O Hﬂ; and H4|

[3.11.  Further Calculations|

82
85
86
86
87
87
87
88
88
88
88
88
88

89



CHAPTER 1

Introduction

Let (W, S) be a Coxeter system and let 7' = |J, o,y wSw™" denote
the reflections in W. A finite dimensional representation V' of W is re-
flection faithful if it is faithful and, for all w € W, V" has codimension
1in V if and only if w is a reflection. For example, if W is finite then
the geometric representation of W is reflection faithful.

Let us fix a reflection faithful representation V of W over a field k& of
characteristic 0. Let R be the ring of regular functions on V', graded so
that V* has degree 2. The ring R carries a W-action by functoriality.

Let us call a subset I C S finitary if the associated standard para-
bolic subgroup Wy = (I) C W is finite. Given a finitary subset I C S
denote by R’ the invariants in R under W;. Furthermore, if I,J C S
are finitary denote by R!-Mod-R’ the category of graded (R!, R”)-
bimodules.

We want to define certain subcategories 'B” C R!-Mod-R’ for all
pairs of finitary subsets I, JCS. Note first that if I, J, K C S are
finitary and satisfy I D K C J then both R and R’ are graded sub-
rings of R¥ and hence we may regard R¥ as an object in R/-Mod-R”.
Roughly, we obtain the categories B’ by tensoring all combinations of
such bimodules together and taking direct summands.

More precisely, given two finitary subset I, J C S we define /B’ to
be the smallest full additive subcategory of R!-Mod-R’ which contains
all objects isomorphic to direct summands of shifts of objects of the
form

RN &Qpa R Qpiz = Qpin1 R

where [ =1, C J; DI, C Jo D -+ C J,.1 DI, = J are finitary
subsets of S. We obtain in this way categories of singular Soergel
bimodules.

Given any double coset p € Wi\ W/W; we consider the subvariety

'Gr] c VW x VW,

obtained as the image of the subvariety {(zA,\) | z € p,A € V} of
V x V under the quotient map. The Bruhat order on W descends to
a Bruhat order on W;\W/W; which we also denote by <. We write
IGrZ, (vesp. 'Grl,) for the union of all /Gr; with ¢ < p (resp. ¢ < p).
We may regard any M € R'-Mod-R’ as an R’ ® R’-module and hence
as a quasi-coherent sheaf on V/W; x V/W,, which allows us to speak

5



6 1. INTRODUCTION

of support of M or m € M. We denote by I'c,M (resp. I'c,M) the
submodule of sections supported on £ Grép (resp ! Grip).
Our main theorem is the following:

THEOREM 1. There is a natural bijection:

isomorphism classes of
W \W/W; = { indecomposable bimodules in 1B’
(up to shifts in the grading).

More precisely, for every p € W \W /W there exists a unique isomor-
phism class (up to shifts) of indecomposable bimodules M € 1B’ whose
support is 'GrZ,,.

In order to explain why one would be interested in proving such
a theorem we need to introduce the Hecke category. Recall that the
Hecke algebra is the free Z[v,v™!]-module with basis {H,, | w € W}
and multiplication:

H,, if ws > w
HuyHs = { (v —v)Hy, + Hys  if ws < w.

The Hecke algebra has a duality involution which sends H,, to Hq;}l
and v to v~ and a self-dual Kazhdan-Lusztig basis {H, | w € W}.
For all finitary I, J C S we consider the Z[v, v™!]-submodule

"M’ ={heH|Hh=hH,=(v+v )hforalseclandtec.J}

The duality involution on H induces an (anti-linear) endomorphism
on each "H” and each "H’ possesses a standard basis { 'H; | p €
Wi \W/W,}. If I,J, K C S are finitary there exists a product

IHJXJHK—>IHK
(fr9) = f*ig

which is a certain renormalisation of the product in the Hecke algebra.
It is natural to view this structure as a Z[v, v~!]-linear category which
we call the Hecke category: the objects are finitary subsets I C S, and
the morphisms from I to J consist of the module H”.

For any bimodule M € 'B7 and p € W;\W/W, the subquotient
I'c,M/T',M is isomorphic to a finite direct sum of shifts of certain
“standard modules” which may be described explicitly. It is therefore
natural to define a character

ch: B/ — 11/
M > " h,'H]

where h, € N[v,v™!] counts the graded multiplicity of the standard
module in the subquotient I'c,M/I' ., M.
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Our second main theorem is that the collection of categories 1B7

for all finitary subsets I, J C S “categorifies” the Hecke category.m

THEOREM 2. If I, J, K C S are finitary we have a commutative
diagram

IRl o Jpk ORI IRK
B’ x ‘B B

lchxch ich

Iy  JoyK "7 1K
H x “H H

Moreover, one may choose representatives {'B;] | p € W \W/W;} for
each isomorphism class of indecomposable bimodules (up to shifts) such
that {ch('B;))} gives a self-dual basis of "H” and

ch('B)) = 'H] + qu,p 'H7  for some g,, € N[v,v™].

q
q<p

If I = J = () then “H is the Hecke algebra and we write B instead
of ’B7. In this case Theorem [l] tells us that the isomorphism classes
of indecomposable objects in B are parametrised, up the shifts, by W
and Theorem [2] tells us that their characters yield a special basis for
the Hecke algebra. This result was obtained by Soergel in [So6| (using
a slightly different definition of ) and formed the principle motivation
for this work. Similar ideas have also been pursued by Dyer in [Dy]]
and [Dy2], and by Fiebig in [Fiel|, [Fie2] and [Fie3].

It is natural to ask for a description of the characters of the inde-
composable modules in /B7. We write B, for a representative of the
isomorphism class of indecomposable objects parametrised by x € W,
normalised as in Theorem [2] Soergel has proposed the following:

CONJECTURE 1 ([So6], Vermutung 1.13). For all x € W we have
ch(B,) = H

For arbitrary finitary subsets I,J C S there exists a Kazhdan-
Lusztig basis {{ H P‘f } for I’H7. The following relates the objects in the
categories !B’ and B and shows that Soergel’s conjecture implies char-
acter formulae for all indecomposable singular bimodules.

THEOREM 3. Let I,J C S be finitary, p € W \W/W; and denote
by py the unique element of p of mazximal length. Then we have an
isomorphism:

R®@pi 'B] ®ps R~ B,,  in R-Mod-R.

IThe Hecke category is already a category. Thus in order to make this statement
more precise we should equip the collection of categories B” together with tensor
product !B x ' BK — IBK with the structure of a 2-category. We will not need this
formalism and will be happy with a rough idea of what “categorification” means in
this context.



8 1. INTRODUCTION

In particular, if Soergel’s conjecture is true then
ch('B)) ="H.

Let V' be a reflection faithful representation of W over an infi-
nite field of positive characteristic. As shown in [So6] it is still pos-
sible to define the category B and one obtains the same classifica-
tion of indecomposable objectsﬂ however Conjecture |1| is not expected
to be true in general. As pointed out in [So4] an understanding of
the characters of the indecomposable bimodules (in particular when
ch(B,) = H,) would have important applications in the representation
theory of groups of Lie type in positive characteristic.

Our last result is a combinatorial method by which one may verify
the characters of the indecomposable bimodules in some cases. We
define, based on the W-graph of (W, 5), a certain subset o(W) C W
of separated elements and confirm Soergel’s conjecture for z € o(W).

THEOREM 4. Suppose that v € o(W). Then ch(B,) = H

w*

The proof relies on elementary properties of the basis {ch(B,,)} and
hence works in arbitrary characteristic.

Of course, in order to apply this theorem it is necessary to know
the set o(WW). The essential ingredient in the calculation of the set
o(W) is the W-graph of the Coxeter system (W,S). Unfortunately,
even in simple situations the W-graph can be very complicated and
no general description is known. However, using Fokko du Cloux’s
program Cozeter [dC1] we use a computer to determine the set o (1)
for low rank, finite Coxeter groups.

The simplest situation is when o(W') = W. This occurs in type A,
for n < 6. In other types and type A, for n > 7 our techniques are
not as effective. In most examples that we have computed o (W) is not
the entire Weyl group. However, we are able to confirm the characters
for approximately 99% of all indecomposable bimodules in ranks < 6.
We also believe that the elements x ¢ (W) for which our methods fail
will provide an interesting source of future research.

As a second motivation for studying the categories !B/ we will
describe how, in certain special situations, the categories B’ appear
as “algebraic models” of certain categories of perverse sheaves. We will
not need the following again, however we believe it is important to have
in mind.

Let G' be a connected reductive algebraic group over C equipped
with the classical topology and T C B C G a maximal torus and Borel
subgroup respectively. Let W be the Weyl group and S its simple

2We believe the same should be true for the categories /87 of singular Soergel
bimodules in positive characteristic, but have not yet pursued this. See Perspective
1) at the end of the introduction.
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reflections. For any subset I C S of simple reflections we let P; denote
the corresponding standard parabolic subgroup.

Let V = LieT be the Lie algebra of T', a vector space over C which
has an induced linear action of W. The representation of W on V is
reflection faithful and we are therefore in the earlier situation: we write
R for the regular functions on V and obtain full subcategories /B of
RI-Mod-R’ forall I,J C S.

For any pair I,J C S we let P x Py act on G via (p1,ps) - g =
p1gp; " and consider the equivariant derived category D?DIX p,(G) with
coefficients in C as defined in [BL]. If X C G is stable under P; x P,
we write X for the equivariant constant sheaf on X, extended by zero
to G. As explained in [So7]|, for all triples I, J, K C S there exists a
convolution functor

D%}XPJ(G) X D?)JXPK(G> - DbPIXPK(G)

which we denote (F,G) — F *p, G.

For all pairs I,J C S we define IP” to be the smallest full additive
category of D%  , (G) which contains all objects isomorphic to direct
summands of shifts of objects of the form

(1) Py xp, Py, *p,, ---xp, Py,

where I =L C 1 DL CJyD -+ C Ju1 DI, =J are all subsets of
S and for 1 <i < n we regard Py, as an object in D%Iixplm (G).

Given any complex algebraic group H, H-variety X and F €
D% (X) the equivariant hypercohomology H$;(F) is a graded module
over Hy(pt). As Hp  p (pt) = R' ® R’ (eg. [Bri], Proposition 1),
given any F € DY p (G) we may regard H}, , p (F) as an object in
RI-Mod-R’.

Using the formalism of Bernstein-Lunts ([BL], Theorem 12.7.2) one
can show that the equivariant hypercohomology of coincides with
the tensor product

R @ps R2 ®@pay -+ @po,_, R € RI-Mod-R’.

It follows that H}, , p restricts to a functor between 'P”7 and 'B7.
By combining the arguments in [So5| or [So4] with Theorem of
this thesis one may show that Hp, , p is fully-faithful. It follows that
hypercohomology is essentially surjective and we obtain an equivalence
of graded additive categories

. Apd Y I
HPIXPJ.,P—)B.

It is natural to ask what the classification of indecomposable objects
in /B’ means under this equivalence. Using the equivariant version of
the decomposition theorem ([BL], Theorem 5.3) one may show that
every object in P” is isomorphic to a direct sum of shifts of equivari-
ant intersection cohomology complexes. The intersection cohomology
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complexes are indecomposable and are parametrised by the P; x Py or-
bits on GG, which in turn are parametrised by W, \W/W. If we denote
by IC, € DY . p (G) the equivariant intersection cohomology complex
corresponding to p € W;\W/W; one has

H.P[XPJ (ICP) = IB;

In some sense this “explains” Theorem [I]in this context. In [So5] these
techniques are used to prove Conjecture [1] for finite Weyl groups. In
[Ha], Harterich generalises these techniques to establish Conjecture
for certain representations of affine Weyl groups.

Perspectives: We finish this introduction with a list of five areas
that we believe deserve further work.

(1) For simplicity we have always assumed that our representation
is over a field of characteristic 0. Instead, we probably should
require the weaker statement:

R is graded free over R! for all finitary subsets I C S.

The only point where we really use characteristic 0 (rather
than the above condition) is during the proof of Corollary
3.3.5, and another argument would have to be found in this
case.

(2) Given any representation V' of W over a field of characteristic
zero such that every reflection ¢ € T fixes a hyperplane, the
definition of the categories of singular Soergel bimodules still
makes sense. However, at certain points the arguments used
to classify the indecomposable objects break down. Somewhat
surprisingly, in [Li2] Libedinsky has show that, if I = J = ()
and there exists an inclusion of representations V' C V where
the action of W on V' is reflection faithful, then the indecom-
posable objects defined using V' and V' are in bijection and
have the same characters. By Proposition 2.1 in [So6] it is
always possible to find a reflection faithful representation of
W containing the geometric representation as a subrepresen-
tation. Hence one may define the category B by using the
geometric representation. It appears straightforward to ex-
tend Libedinsky’s arguments to the singular situation (that is
I,J # ), however this should be written down. It should also
be noted that in [Lil] Libedinsky has recently obtained ex-
plicit expressions for all morphisms between “Bott-Samelson”
bimodules in B. It is not clear if his techniques generalise to
the singular situation.

(3) In [Kh] Khovanov has shown how to produce a knot-invariant
(related to the HOMFLYPT polynomial) by taking Hochschild
homology of a complex of Soergel bimodules known as the
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Rouquier complex (see [Ro]). In [WW] Webster and the au-
thor have shown how one may reinterpret some steps in this
construction geometrically. It would be interesting to find ap-
plications of singular Soergel bimodules in this theory.

The set o(W) C W of separated elements (appearing in The-
orem (4| above) has the advantage of being simple to define
and (relatively) easy to compute. However, the disadvantage
is that if x ¢ o(W) there is no direct way to obtain more
information on the character of B,, for any given representa-
tion. Also, brute force calculation of B, via computer seems
difficult.

In [Wi] we hope to explain (extending results of Soergel
in [So4|) that, after fixing an infinite field k of characteris-
tic not too small (for example char k > 5 is always sufficient)
there is an intimate relationship between intersection cohomol-
ogy complexes of Schubert varieties with coefficients in &, and
Soergel bimodules constructed using a representation over the
same field. In particular, if the graded dimensions of the stalks
of intersection cohomology of a Schubert variety correspond-
ing to x € W over k are different to those in characteristic 0,
then it is not possible to have ch(B,) = H,.

Hence one may instead search for examples where the stalks
of intersection cohomology over Z have torsion. Recently, in
[Bral, Braden has made some progress on this problem and
discovered examples of 2-torsion in type A7 and Dy. It would
be interesting to combine his techniques with the set o(W).
More generally, the importance for representation theory of
understanding intersection cohomology in positive character-
stic and over Z is becoming clear (see [Fied], [Ju] and [MV]).
Let @ C h be a crystallographic root system in a real Euclidean
vector space and W; C W the corresponding finite and affine
Weyl groups. Let S C W be the simple reflections and I C S
be such that W; = W;. After choosing a reflection faithful
representation of V' one may apply the above construction to
obtain a tensor category BL. In this case {H! is an Z[v,v~1]-
algebra known as the “adjoint spherical Hecke algebra”. It is
a fact known as the Satake isomorphism (see [Lul]) that the
spherical Hecke algebra is a deformation of the representation
ring of the adjoint semi-simple group G with root system
®V dual to ®. Using this fact, one may show that if one
normalises the representatives {'B} | p € W;\W/W;} as in
Theorem [2| then any tensor product ‘B! @ zr ‘B! is isomorphic
to a direct sum of ‘B! for r € W;\W/W; without shifts. We
therefore obtain a tensor subcategory 'Bj containing all 'B}
for p € W, \W/W;. Tt is natural to expect an equivalence of
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tensor categories
'B{=Rep G

where Rep ) denotes the tensor category of finite dimensional
algebraic representations of G)/. Making this precise should
certainly involve [MV]. One would hope to be able to enlarge

IBl to a category 1B] so as to obtain an equivalence
IBf=Rep G,

where GY, is the simply connected algebraic group with root
system ®V. A further challenge would be make everything
work over a field of positive characteristic and possibly find a
connection with tilting modules.
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LIST OF IMPORTANT NOTATION

List of important notation

a Coxeter group and its simple reflections

the reflections in W

the length function on W

finitary subsets of S, (i.e. Wy, Wy, ... are finite)
the standard parabolic subgroup generated by [
the longest element in WW;

two Poincaré polynomials of W;

the (W, W;)-double cosets in W

elements of W, \W /W,

the maximal and minimal elements in p
Poincaré polynomials of p
the longest element in W~ ; -1
Poincaré polynomials of Wi~ ; -1
the Bruhat order on W \W/W;

the Hecke algebra

a standard and Kazhdan-Lusztig basis element
a hom space in the Hecke category

a standard basis element in H”

a Kazhdan-Lusztig basis element in /H”

a standard generator of the Hecke category
the bilinear form on ‘H”’

a reflection faithful representation of W

an equation for Vt Cc V

the graded ring of regular functions on V'

the Wr-invariants in R

the standard object indexed by p € W, \W/W;,
the enlarged ring of regular functions

the (twisted) graph of p in V/W; x V/W;

the union of graphs of all p € C C W, \W/W;
sections of M with support in /Gr,

the stalk of M at p

support subquotients of M

a nabla module and the nabla character

a delta module and the delta character

the duality functor

the category of Bott-Samelson bimodules

the category of singular Soergel bimodules

an indecomposable singular Soergel bimodule
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CHAPTER 2

Coxeter Groups and Hecke Algebras

1. Coxeter groups

In this section we recall standard facts about Coxeter groups and
standard parabolic subgroups, as as well as their Poincaré polynomials
and double cosets. We then introduce translation sequences, which are
a generalisation of reduced expressions.

1.1. Fundamental properties. In this section we recall standard
facts about Coxeter groups. References for this section are [Hu| and
[Bol.

Recall that a Coxeter system (W, S) is a group W together with a
set of distinguished generators S C W subject only to the relations

(st)™) = id for all s,t € S

where m : Sx.S — NU{oo} is a symmetric function satisfying m(s, s) =
1 and m(s,t) > 2 for all s # t € S. The elements of S have order 2
and are called the simple reflections. The reflections consist of the set

T = Uwa’lcT/V.

weW

A reduced expression for w € W is an expression for w in the
elements of S of minimal length. The length of w, ¢(w), is the length
of a reduced expression for w. If W is finite there is a unique element
of longest length, the longest element wy € W. One has {(wow) =
l(wg) — L(w) for all w € W. The length of an element w € W may be
expressed in terms of reflections:

(1.1.1) lw)y=H{teT|wt<w}l =|{teT]|tw<w}.

The Bruhat order < on W is the partial order generated by the
relation wt < w if t € T and ¢(wt) < (w). Alternatively, z < w if and
only if  may be obtained as a subexpression of a reduced expression
for w.

To the Coxeter system (W, S) one may associate a directed, edge-
labelled graph Gy, as follows. Its vertices correspond to the elements
of W and there is a directed edge from = to tx labelled by t for all
x € W and t € T such that x < tx. The graph Gy is the Bruhat graph
of W. If X C W is a subset we denote by Gx the full subgraph with
vertices X.

15



16 2. COXETER GROUPS AND HECKE ALGEBRAS

1.2. Parabolic subgroups and double cosets. Given a subset
I C S we consider the subgroup W; C W generated by I. This is a
standard parabolic subgroup of W. This is also a Coxeter group with
presentation
(st)™*D = id for all s,t € I.
In this work we will be chiefly concerned with finite standard parabolic
subgroups.

DEFINITION 1.2.1. A subset I C S is finitary if Wy s finite. If
I C S s finitary we denote by wy € W the longest element of W. The
Poincaré polynomials of Wy are the elements in N[v,v™] defined by

)= > v and a(I) =" ™IF(I).
weWr
Let f — f be the involution of Z[v,v~'] which fixes Z and sends v
to v='. We will call elements f € Z[v,v™'] satisfying f = f self-dual.
Because l(wyx) = l(wy) —{(z) for all z € W it follows that 7 (1) is self-
dual. It will be useful to always define two normalisations of Poincaré
polynomials: 7 will always be self-dual and 7 will always lie in N[fv~1].

DEFINITION 1.2.2. Given I C S we define
Dy ={weW |ws>w foralls €I} and ;D= (D;)"".
If I C S is finitary we define
D' ={weW |ws<wforalsecl} and 'D = (D).

The elements of Dy and D! (resp. ;D and 'D) are called the minimal
and maximal left (resp. right) coset representatives.

The terminology is justified by the following proposition.

ProrosITION 1.2.3. Let I C S. FEwvery left coset of Wy contains
precisely one element of Dy and this is the unique element of minimal
length. Furthermore, {(wu) = {(w) + {(u) for all w € Dy and u €
Wr. If I is finitary, then every left coset contains a unique element of
mazimal length, this element lies in D' and ((zu) = ((2) — {(u) for all
2z € D! and w € W;. Analogous statements hold for right cosets using
D and 'D.

PRrROOF. For the case of minimal elements see Proposition 1.10 of
[Hu] or Proposition 2.2.3 of [Cal. If W; is finite then the case of
maximal elements follows from this. 0

COROLLARY 1.2.4. If I C J C S are finitary then
7(J) S 1
— = v e Njo™.
ﬂ-(]) weW yNDy

It is natural to ask if the generalisation of the above proposition is
true for double cosets of two standard parabolic subgroups.
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DEFINITION 1.2.5. Given two subsets I,J C S we define

[DJ = [D N DJ.
If I and J are finitary we define
D’ ='Dn D’

The set ;D; does indeed give minimal distinguished double coset
representatives:

PROPOSITION 1.2.6. Let I,J C S. Every double coset p = WixW;
contains a unique element of ;D; and this is the element of smallest
length in p. If I and J are finitary then p also contains a unique
element of 1D’ and this is the unique element of mazimal length.

PRrOOF. For the case of minimal elements see [Cal, Proposition
2.7.3. The case of maximal elements if W; and W are finite follows by
similar arguments. U

DEFINITION 1.2.7. Let I,J C S. We denote the set of (W, W,)-
double cosets of W by W\W/W ;. More generally, if X C W is a union
of (Wi, Wy)-double cosets we write Wi \X/W; for the (Wy, W;)-double
cosets contained in X. Given p € W \W/W; we denote by p_ the
unique element of minimal length. If I and J are finitary, we denote
by py the unique element of maximal length in p. We call p_ and
py the minimal and maximal double coset representatives respectively.
The Poincaré polynomials of p are the elements in N[v,v™] defined by

7(p) = v¥®-) ZU—%(J»‘) and w(p) = v"PIPIF (),
TEP

In will be important in the sequel to be able to describe intersections
of (not necessarily standard) parabolic subgroups. This is the subject
of Kilmoyer’s theorem.

THEOREM 1.2.8 (Kilmoyer). Let I,J C S and p € W\ W/W;.
Then
W] ﬂp_WJp:1 = Wlﬁp_Jp:l'

PROOF. See |Cal, Theorem 2.7.4. O

The following theorem is a generalisation of Lemma to double
cosets.

THEOREM 1.2.9 (Howlett). Let I,J C S and p € W\ W/W;.
Setting K = I Np_Jp_" the map

(DxkNW) xW; — p
(u,v) — up_v
is a bigection satisfying ((up_v) = €(p_) + L(u) + £(v).
PROOF. See [Ca], Theorem 2.7.5. O
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The intersection INp_Jp~" emerges often enough to warrent special
notation.

DEFINITION 1.2.10. Let I,J C S be finitary, p € W, \W/W; and
set K =INp_Jp-'. We define #(I,p,J) = 7(K), n(I,p,J) = m(K)
and wr, 5 = Wk.

COROLLARY 1.2.11. Let I,J C S be finitary and p € W \W/W.
We have the identitities:

(121)  0py) —Up) = Lwr) + ) — i)
(1.2.2) m(p)7(L,p,J) =m(1)7(J)

(1.2.3) m(p)r(I,p,J) =n(Il)m(J)

(1.2.4) 7(p) = n(p).

PROOF. The first three statements follow from from Howlett’s the-
orem and Corollary [1.2.4 The last statement follows because (),
m(J) and 7(I,p, J) are all self-dual and therefore so is 7(p). O

PROPOSITION 1.2.12. Let I,J C S andp € WA\W/W;. All edges of
the Bruhat graph of W restricted to p C W are generated by reflections
i Wr and Wy. In other words, if x and tx both lie in p then either
t € Wi ortx = xt’ for some reflection t' € W;.

Proor. We may assume tx < x and write x = up_v as in Theorem
[1.2.9] After choosing reduced expressions for u, p_ and v we obtain a
reduced expression for x by concatenation. By the exchange condition
([Hu], Theorem 5.8 or [Bal], IV, Proposition 4), we may obtain an
expression for tx by omitting a reflection from a reduced expression
for . However, using our reduced expression above, we must omit a
reflection from either u or v in order to stay in p, and the proposition
follows. O

Recall that W becomes a poset when equipped with the Bruhat
order.

DEFINITION 1.2.13. Given finitary I,J C S the Bruhat order on
WA\W/W; (which we also denote by <) is the partial order defined by
settingp < q if p— < q_ in W. We say that a subset C C W \W /W is
downwardly (resp. upwardly) closed if p € C' and g < p (resp. ¢ > p)
implies q € C.

Given a poset (X, <) and z € X we will often abuse notation and
write {< x} (resp. {< z}) for the set of elements in X less (resp.
strictly less) than x, and similarly for {>z} and {>=x}.

Let ¢ : X — Y be a map between the underlying sets of two posets
(X, <) and (Y, <). We call ¢ a morphism of posets if x; < xo implies
that ¢(zq1) < ¢(z2). If ¢ is a morphism of posets we call ¢ <-strict if,
whenever ¢(z) <y for x € X and y € Y there exists 2/ € ¢~ !(y) such
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that x < 2/. Similarly, ¢ is >-strict if, whenever y < ¢(z) there exists
7' € ¢ '(y) such that 2’ < z. If ¢ is <-strict (resp. >-strict) then
oY {< y}) (resp. ¢71({> y})) is equal to {z | * < 2’ for some 2’ €
¢ Hy)} (resp. {z | z > 2’ for some 2’ € ¢~ (y)}. We call ¢ strict, if it
is both <-strict and >-strict.

ProrosITION 1.2.14. Let I C K and J C L be subsets of S. The
quotient map
qu: W]\W/WJ — WK\W/WL
s a strict morphism of posets.

PROOF. In order to show that qu is a morphism of posets we need to
show that if z < y in W and p and ¢ are the (W, Wp)-double cosets
containing x and y respectively, then p_ < ¢_. By choosing simple
reflections in W; and W; which reduce y, and repeatedly applying the
fact that x < y implies that either x < ys or zs < ys for s € S and
similarly on the left ([Hul, Proposition 5.9) we see that 2’ < ¢_ for
some 2’ € p and hence p_ < ¢_. Thus qu is a morphism of posets.
Lastly, if qu(p) < ¢ for some p € W \W/W; and q € W \W/W,,
then qu(p)_ < ¢_. By multiplying by suitable elements s € K on the
left and ¢ € L on the right and using the previous fact, we see that
p_ < w for some w € ¢ and so p < p’ for some p’ € qu~!(q). Hence qu
is <-strict. Similar arguments show that qu is >-strict. O

Let qu be as in the proposition and choose ¢ € Wi \W/W. The
set qu!(¢) always has a maximal element p. Because qu is strict it
follows that

qu ' ({<q}) = {<p} and qu'({>q}) ={>p}.

The following fact will be needed in in the sequel.

LEMMA 1.2.15. Let I C K and J C L be finitary subsets of S. If

p e WA\W/W; and g € Wi \W/W, are such that p C q then
(K, q, L)
(I, p,J)

Proor. We may assume that either ] = K and J = L. If | = K
then, by imitating the arguments used in the proof of [Cal, Lemma
2.7.1 one may show that I Np_Jp~' € K N¢_Lq¢~' and the lemma
follows in this case by Corollary [1.2.4, The case J = L follows by
inversion and the fact that two conjugate subsets of S have the same
Poincaré polynomials. O

€ N[v,v1].

We will need the following proposition when we come to discuss
Demazure operators.

PROPOSITION 1.2.16. Let p be a double coset and x € p. We have
Upy) — ) = [{t € T | @ < tw € p}.
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PrROOF. Let u € Wi and v € W; and set y = uzv € p. We claim
that for all t € T,

(1.2.5) r>trgpey>(utu Dy ¢ p.

In order to verify this claim it is enough to show that, if x € p
r>tr¢pseW;=uxs>trs
x>tr ¢p,se W= sz > (sts)sz.

For the first statement note that either xs > txs or xs < trs. However,
as r > tx the second possibility would imply x = txs by Deodhar’s
“Property Z” (alternatively this follows from [Hul, Proposition 5.9)
which contradicts tz ¢ p. The second statement follows similarly. Thus
we have verified . It is also immediate that, for all £t € T,

tr €p& utu_ly € p.

Now, setting y = p, and using the above facts together with the max-
imality of p; € p we follow

Upe) — y) = (L€ T | py > tp Y — {t€ T | & > ta}
={teT|pr>tpr ept| -t €T |z > tx € p}|
={teT|z<txep}. O

1.3. Translation sequences. When studying a Coxeter group W
an important role is played by expressions. Their importance becomes
particularly obvious when studying the Bruhat order or Hecke algebra.
In this work we are interested in the set of double cosets W;\ W /W,
for I,J C S and thus would like an analogue of reduced expressions.
These are the “translation sequences” of the title.

As a motivation, consider a reduced expression st...u. Given a
simple reflection s, we will write (s) for the parabolic subgroup which
it generates. It is natural to consider st...u as giving a sequence of
cosets:

{id} C (s) D{s} Cs(t) D{st} C---D{st...u}.

This will be our model for a “translation sequence”: roughly speaking it
is a sequence of double cosets, in which an inclusion relation is satisfied
at every step.

In contrast to the one-sided cosets, an equality between two dou-
ble cosets WixW; and WxgyWy does not imply that W; = Wy or
W; = Wp. For our purposes, it will be necessary to keep track of the
groups W; and W; and not just their double cosets. This leads to some
complicated notation.

We begin by defining what a step in a translation sequence may

look like:

DEFINITION 1.3.1. Let I,J,K,L C S be finitary, p € W \W/W;
and ¢ € Wi \W/W. We call
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(1) (K,q, L) a shrinking of (I,p,J) if I D K, JD L and p D q.

(2) (K,q,L) a expansion of (I,p,J) if I C K, JC L andp C q.
A shrinking is reduced if the maximal elements of p and q are equal.
The expansion is reduced if the minimal elements of p and q are equal

and
INp_Jp-'=Kngq_ Lg "

We can now define a translation sequence:

DEFINITION 1.3.2. A translation sequence is a triple (1;, p;, J;)o<i<n
where, for all0 < i <mn, I;,J; C S are finitary and p; € W \W/W..
The sequence is subject to the following conditions:

(1) Iy = Jy and id € po;

(2) (Iix1, pit1, Jix1) is either a shrinking or expansion of (I;, p;, J;)

for0<i<mn, .

The translation sequence is reduced if each shrinking and expansion
is reduced. A left translation sequence (resp. right translation se-
quence) is a translation sequence (I;,pi, J;)o<i<n n which J; = Jixq
(resp. I; = I;11) for all 0 < i < n. The end-point of a translation
sequence (1;, pi, Ji)o<i<n 1S the triple (I, pn, Jn).

ExaMPLE 1.3.3.

(1) We have described translation sequences as a generalisation of
an expression st...u for an element w € W. Given such an
expression we obtain a right translation sequence (with slight
abuse of notation):

(0,4d,0), (0, (s), s), (D, s,0), (0, s{t),t), (0, st, D), ete.

This translation sequence has endpoint (0, w, ) and is reduced
if and only if st...u is a reduced expression.

(2) More generally, a right translation sequence (I, p;, J;) with I =
0 gives a path in the Coxeter complex of (W, S) (see [Bro]). It
would be nice to have a geometric interpretation for translation
sequences in general.

The existence of reduced expressions in a Coxeter group is a triv-
iality. The following proposition (which is important in what follows)
show that reduced translation sequences always exist.

PROPOSITION 1.3.4. Let I,J C S be finitary and p € W, \W/W;.
Then there exists a reduced right translation sequence (I,p;, Ji)o<i<n
with end-point (I,p,J).

PROOF. Assume that one of the following is true:

(1) There exists K 2 J, necessarily finitary, such that p, remains
the maximal element in ¢ = W;pWg;

(2) There exists K C J such that, setting ¢ = W;p_Wy we have
INnp_Jpt=Inp_Kp~'
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In case 1), (I,p,J) is a reduced shrinking of (I, ¢, K) and in case 2),
p_ remains the minimal element in ¢ and thus (7,p,J) is a reduced
expansion of (1,q, K).

Thus, by induction, we may assume that neither 1) nor 2) is true.
We claim that in this case necessarily I = J and p = W;W; = W;
which implies the proposition.

As 2) is not true, for all t € J there exists s € [ with sp_ = p_t.
Thus we may write p, = up_ for some u € W;. Now assume for
contradiction that p_t < p_ for some t € S. We cannot have up_ <
up_t as otherwise p_t < p_ < up_ < up_t would all be in the same
left Wi-coset. Hence up_ > up_t, contradicting the fact that 1) is not
possible. We conclude that p_ = id. Hence I D J, p, =wyand [ = J
by using 1) again. O

2. The Hecke algebra and category

We begin by recalling the Hecke algebra, Kazhdan-Lusztig basis
and a certain canonical bilinear form. We then introduce the Hecke
category (a certain relative version of the Hecke algebra) and define
its standard basis, standard generators, Kazhdan-Lusztig basis and
bilinear form.

2.1. The Hecke algebra and Kazhdan-Lusztig basis. Let (W, .5)
be a Coxeter system. Recall that the Hecke algebra H is the free
Zv,v~-module with basis {H,, | w € W} and multiplication

H,, if sw > w
(2.1.1) HH, = { (v' —0)Hy, + Hyy  if sw < w.

We call {H,,} the standard basis. Each H,, is invertible and there is
an involution on H which sends H, to H;&l and v to v, We will
call elements fixed by this involution self-dual. One has the following
fundamental theorem of Kazhdan and Lusztig ([KL1]):

THEOREM 2.1.1. There exists a unique basis {H, | w € W} such
that:
(1) Each H,, is self-dual.

(2) One has H,, = > ., howHy with hy, =1 and hy., € vZ[v).

r<w

PRrOOF. The original proof is in [KL1]. In [So3] there is a simpler
proof (which uses the above notation). O

We call {H,,} the Kazhdan-Lusztig basis and the coefficients h, ,
the Kazhdan-Lusztig polynomialsE]

1t should be noted that the hz,y are not exactly the Kazhdan-Lusztig polyno-
mials in the literature. One may write v/®)~*Wh, = P, (v=2) with P, , € Z[q].
P, , is the “real” Kazhdan-Lusztig polynomial.
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Clearly H,; = H;; and a calculation shows that H, = H, + H,q,
which, together with (2.1.1]), yields

vH,, + Hg, if sw > w

(2.1.2) H.H, = { v iH, + H,, if sw < w.

If x <y, write u(z,y) for the coefficient of v in h,,. One has the
following multiplication formula ([So3], Proposition 2.8):

(v+v HH, if sw < w

(213) ﬂSﬂw B { ﬂsw + Zaz<w;sx<x /L(QZ’,U))ﬂa; lf sW > w

If sw < w one may expand H H,, in (2.1.2) and (2.1.3) to conclude
that hgy. = Vhy, if s < 2. It follows that if I C S if finitary and wy
denotes the longest element in W; we have

(2.1.4) H, = Z plwn =@
zeWr

If s € W} is a simple reflection one has

Hsﬂwl - ﬂsﬂwl - /UHZdﬂwI - v_lﬂ

w;
From which it follows that

(2.1.5) H.H, =v'WH, .

If K C I then, combining and we obtain
(2.1.6) H, H, =n(K)H,,.

There is a Z[v, v~ ']-linear anti-involution i : H — H sending H, to
H,-1. Following [Lu2] we define a bilinear form:

H x H — Zv,v]
(f,g9) — (f,g9) = coefficient of H;y in fi(g).

The form has the following alternative description:

LEMMA 2.1.2. We have (H,, Hy) = 04, for all z,y € W.

PROOF. If x = id or lies in S then the formula is immediate from
(2.1.1). We may now induct on the length of z. After having chosen
s € S with zs < z we have (H,, H,) = (Hys, HyH;) = 0y5ys = 01y by
induction and again. O

2.2. The Hecke category. We want to define a certain relative
version of the Hecke algebra associated to all pairs of finitary subsets
I,J C S. The most natural way to define this is as an “Z[v, v
linear category”. Recall that, given a ring R, an R-linear category is
a category in which each space of morphisms has the structure of an
R-module and composition is R-bilinear.
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For all pairs of finitary subsets I, J C S define:
"M = H,H
H = HH,,,
Il — Iy

There is no natural multiplication on ‘H”. However, given another
finitary subset K C S we may define a multiplication as follows

IHJ % JHK N [HK
1
(hl, hg) — hl * g hg = mhlhg.
This well defined by (2.1.6). If J = () we write * instead of xj. The

existence of this “partial multiplication” is formalised by the following
definition.

DEFINITION 2.2.1. The Hecke category is the Z[v,v™!]-linear cat-
egory defined as follows. The objects are finitary subsets I C S. The
morphisms between two objects I and J consists of the module "H’.
Composition TH” x THE — THE s given by *.

This does indeed define a Z[v,v~!]-linear category. The only point
that may not yet be obvious is the existence of the identity endomor-
phism. However this will be become clear in the discussion below.

REMARK 2.2.2. The Hecke category unifies several different objects:

(1) The endomorphism ring of ) C S is the Hecke algebra.

(2) For any finitary subset I C S, Hom(0,I) is a left module over
End(0) = H. This is an example of a “parabolic Hecke mod-
ule” introduced by Deodhar in [Dea].

(8) If W is an affine Weyl group, W C W s the finite Weyl
group, and I C S corresponds to all simple reflections in W
then End(I) is the (adjoint) “spherical Hecke algebra” (see e.g.
[Lul]).

Our main goal for the rest of the section is to define a basis for 7H”
for all finitary subsets I,J C S and analyse the action of “standard
generators” on this basis.

Until Proposition fix I, J C S finitary. We start with a lemma
which helps us to decide if an element h € H belongs to H”.

LEMMA 2.2.3. Let h =) a,H, € H. The following are equivalent:
(1) h e "H
(2) H,.h=7m(Wr)h
(3) Hoh = (v+v~YYh for all s € 1.
(4) For ally € W
Asy = Vay
if s € Wy is a simple reflection and sy < y.
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The analogous “right handed” statements hold for H’
PROOF. Straightforward, using ([2.1.6)) and Proposition 1.2.3, [

In particular, we conclude that h = 3 a,H, is in “H” if and only
if, for all y € W, a5, = va, and a,; = va, for all s € I and t € J such
that sy <y and yt < y.

This shows how to find a basis for “H’ as a Z[v,v~!]-module.
Namely, for all p € W \W/W, define

IH; — Z Ue(m)—f(w)Hx'

rEP
It follows that, if h =Y a,H, is in “H” then
(2.2.1) h= Y a, 'H.
pEWNW/ Wy

The set { 'H) | p € W;\W/W,} is clearly linearly independent over
Zlv,v™1] and we conclude that they form a basis, which we call the
standard basis of TH’.

Using Lemma and (2.1.3) we see that H, € "H” if and only if
y is maximal in its (W, W;)-double coset. In general, if p € W \W /W,
we define

Tppd _

ﬂp o ﬂm'
We have

"H) = "H] +Y hy, . 'H.
q<p
It follows that {Iﬂz | p € W \W/W;,} also forms a Z[v,v™] basis for
I'H7. We will refer to this as the Kazhdan-Lusztig basis.
For all finitary subsets I, J C S satisfying I C J or J C I we define

g = IH; where p = WridW .

We call call elements of the form ‘H” € "H’ standard generators. The
standard generators are the analogues of the elements H, € ‘H and we
will see below that the set of standard generators generate the Hecke
category, which justifies the terminology. The following proposition
describes the action of the standard generators on the standard basis.

PROPOSITION 2.2.4. Let I, J, K C S be finitary and assume J C K
or J D K. The action of "H* on the basis { "H, | p € W, \W/W;} is
as follows:

(1) If J D K then

Irpd . JiK _ Upy)—b(qy) TrpJ
o) x; 'H" = Z pte+)—4a+) ;.
q€EW\p/ Wik
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(2) If J C K then

fed o apk o ta)—to) TG K)
H H" = —
v ’ w(lpd)
where g = WipWy is the (W, W )-coset containing p.

Before we prove the proposition we need a lemma.

LEMMA 2.2.5. Let I,J C S be finitary, x € W and p = WiaxW;.
Then

HY « Hy s *HY = ")~ @) (1 p, J) IHI‘,].

Proor. By Howlett’s Theorem (1.2.9) we may write x = up_v
with w € Wi, v € W; and £(x) = l(u) + €(p_) + £(v). By (2.1.5) we
have:

"HY « H,  "HY = "0~ g0 s [, s 07
Thus we will be finished if we can show that
'H« H, * "0 ==(1,p,J) 'H].

We write K = I Np_Jp_' so that 7(I,p,J) = 7(K). If s € K then
sp_ = p_s' for some p' € J and therefore

(2.2.2) H,H, =H, H,,

where K’ = p~'Kp_. Because K and K’ are conjugate 7(K) = m(K").
We define N € ‘H by

N = ottt g,

u€D MWy
and calculate
'« H, « "0’ =NH, H, H, (Proposition
=NH, H, H,, (12.2.2)
=m(K)NH,_H,, (2.1.6))
= m(K)v* Z v @ H,  (Howlett’s theorem)
e

=n(K)'H/
where the last line follows because
a = l(wr) — l(wk) + €(wy) + £(p-) = (p+)
by Corollary [I.2.11] O

PROOF OF PROPOSITION [2.2.4]. Statement (1) follows by (2.1.6)
and (2.2.1). We now turn to (2). Let us expand

P="H"«H, '+, 'HE
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in two different ways. As °H7 x 'HX = °HX by (2.1.6) we obtain,

using Lemma [2.2.5
P="H"xH, x"HY =" )~0r(1 ¢, K)HE.
We also have (again using Lemma [2.2.5)):
P=mn(l,p,J)'H] «; "H".
We follow that

_ I1,q,K)

293 IppJ TR _ fa-) e(p_)7T< ' 45 IppK

229 P S ey T

By Corollary [1.2.15| and the fact that H is free as a Z[v,v~!]-module.

g

Given an element h € TH’ we may write h = >\, IHI‘)] . We define
the support of h to be the finite set
supph = {p € W \W/W, | A\, # 0}.
A second corollary of the above multiplication formulas is a description

of multiplication by a standard generator on the support.

COROLLARY 2.2.6. Let I,J, K C S be finitary with J C K and let
qu: WA\W/W; — W\W/Wkg
be the quotient map.
(1) If h € "H’ then
supp(h *; "H™) C qu(supp h).
(2) If h € "HX then
supp(hxx “H”) C qu™'(supp h).
Recall that in Subsection [1.3| we introduced translation sequences

as a generalisation of reduced expression. We state a proposition,
analysing a product associated with a translation sequence.

PROPOSITION 2.2.7. Let (I,p;, Ji)o<i<n be a right reduced transla-
tion sequence with end-point (I,p,J). Then

U g, B g xS = T Y Y.
q<p

Before we prove this proposition, we show how it may be used to
show that the standard generators generate the Hecke category (justi-
fying the terminology). We first define what this means.

Let R be a ring and C be an R-linear category. Suppose we are
given a subset X5 C Hom(A, B) for all pairs of objects A, B € C. We
define the span of the collection {X 45} to be the smallest collection of
R-submodules {Y 5 C Hom(A, B)} such that:

(1) Xap C Yup forall A, BeC,
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(2) The collection {Y4p} is closed under composition in C.

We say that {Xap} generates C if the span of {Xap} consists of
Hom(A, B) for all A, B € C. Less formally, one may refer to the span of
any set of morphisms in C and ask whether they generate the category.

COROLLARY 2.2.8. The standard generators 'HY for finitary I, J C
S with either I C J or I D J generate the Hecke category.

PROOF. By Proposition [1.3.4] for every p € W;\W/W; there ex-
ists a right reduced translation sequence (I, p;, J;)o<i<n With end-point
(I,p,J). For each p, choose such a translation sequence and consider
the product

P, = TH% %, PN 5 oy I H

By the above proposition, after choosing a total ordering on W, \W /W
compatible with the Bruhat order, the matrix relating the standard
basis { ‘H;} and the elements {P,} is uni-triangular. In particular,
the set {P,} spans "H” as a Z[v,v"']-module. The corollary then
follows. O

REMARK 2.2.9. It is natural to ask what relations the arrows 'H”’
satisfy. We have not looked into this.

Proor. We will prove the proposition via induction on n, with the
case n = 0 being trivial. For 0 < k£ < n let us denote by P the partial
product:

Py = "H" s PHM 5y oony HE
By induction we have:
(1) supp(Po-1) C{p P < pual;
(2) the coefficient of 'H/~—1in P,_; is 1.
There are two cases to consider:
Case 1: Jy-1 D Jn: As (I, pp, Jp) is areduced shrinking of (1, p,_1, Jn_1),

prn is the maximal (W;, W, )-double coset in p, 1. It follows from
Proposition m that the coefficient of IHI;]: is 1 and, if

qu: WA\W/W,, — WA\W/W,,_,

denotes the quotient map, then supp(P,) C qu ' ({< pp_1}) = {< pu}
by Corollary and the fact that qu is strict.
Case 2: J,_1 C J,: Let

qu : W[\W/W‘LFl — W[\W/an
denote the quotient map. As (I,p,,J,) is a reduced expansion of
(I, ppn-1,In-1), 7L, pp_1,Jn-1) = 7(I,pn,Jn) and p,_1 is minimal in

qu~'(pn). Hence the coefficient of 'HJ is 1 by Proposition and
supp(P,) C qu(supp P,—1) C {< p,} as qu is a map of posets. O
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In the previous subsection we defined a bilinear form on H. We now
generalise this construction and define a bilinear form on each {H’ for
I,J C S finitary. Recall that i : H — H denotes the Z[v, v!]-linear
anti-involution sending H, to H,-1. As H, and H,, are fixed by 7 it

wy
follows that i restricts to an isomorphism of Z[v, v—!]-modules

i TH — THE
We define
T x IH — Zv, v
(f,g9) — (f,g) = coefficient of H;q in f *;i(g).

We do not include reference to I and J in the notation, and hope that
this will not lead to confusion. It follows from the definition that if
I,J,K C S are finitary and f € T7H’, g € 7"HE and h € TH® then
(2.2.4) (f*59,h) = (f, bk i(g))
The following lemma describes the bilinear form on the standard basis
of THY.

LEMMA 2.2.10. Let I,J C S be finitary. For all p,q € W \W/W;

we have

m(J) "t

PROOF. Let f,g € “H’ and write f, § for the elements f and g
regarded as elements of H. It is Clear from the definition that

(f.9) = — )<f . )

where the second expression is the bilinear form calulated in ‘H. We
may then calculate using Lemma . If p # ¢ then <IJ_"-]pJ7 IHqJ) = 0.
If p = g we have

< IHJ IHJ Z ,02(5 p+ @(p+ (( ) D

{ g7 IHJ> — ptp+)—tp-) m(p)

~—

pr






CHAPTER 3

Singular Soergel Bimodules

In this chapter we study singular Soergel bimodules. The main
goals are Theorems [5.4.2 and [5.5.1] which classify the indecomposable
singular Soergel bimodules and show that they provide a categorifica-
tion of the Hecke category.

In order to describe the contents of this chapter in more detail we
briefly recall the definition of the categories /B’ of singular Soergel bi-
modules already given in the introduction. Let R be the graded algebra
of regular functions on a reflection faithful representation V' of W and
for a finitary subset I C S let R denote the subalgebra of invariants
under W;. Given two finitary subsets I,J C S let R-Mod-R’ de-
note the category of graded (R!, R”)-bimodules. For any pair I,.J C S
of finitary subsets we define the categories 'B” of singular Soergel bi-
modules to be the smallest full additive subcategory of R/-Mod-R’
which contains all modules isomorphic to direct summands of shifts of
bimodules of the form

R Qg R Qpts =+ O plns Rln

where [ =1, CJy DI, C---C J,_1 DI, =J are all finitary subsets
of S.

Given any module M € R!-Mod-R’ and an enumeration of the
elements in W;\W/W compatible with the Bruhat order one obtains
two natural filtrations of M

- C FC(i—l)M C FC’(i)M C FC(i+1)M (@O

by considering M as a quasi-coherent sheaf on V/W; x V/W;. The
crucial fact is that, if M € /B”, both filtrations are exhaustive and the
subquotients are isomorphic to direct sums of shifted standard modules,
which are certain bimodules in R’-Mod-R’ which may be described
explicitly.

In order to prove this fact we define objects with nabla flags and
objects with delta flags as those objects for which the subquotients in
the first or second filtration respectively are isomorphic to direct sums
of shifts of standard modules. We then show that these subcategories
are preserved by the functors of restriction and extension of scalars,
which we renormalise and rename translation functors. Given an object
with a nabla or delta flag it is natural to define its nabla or delta

31
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character in the Hecke category by counting the graded multiplicities
of standard modules in the subquotients of the above filtrations. It
turns out that one may describe the effect of translation functors on
the character in terms of multiplication with a standard generator in
the Hecke category.

By the inductive definition of the objects in B” it follows that
they they have both a nabla and a delta flag. This may be exploited
to describe Hom(M, B) and Hom(B, M) when B is a Soergel bimodule
and M has a delta or nabla flag respectively. The classification of the
indecomposable objects in 37 is then straightforward.

Given the classification of indecomposable objects in B7 it is nat-
ural to attempt to describe their character in the Hecke category. In
case I = J = (), Soergel has conjectured that the character of an (ap-
propriately shifted) indecomposable module parametrised by w € W is
given by the Kazhdan-Lusztig basis element H,. We show that if this
conjecture is true then the characters of all indecomposable singular
Soergel bimodules are given by Kazhdan-Lusztig basis elements.

The structure of this chapter is as follows. In Section [[|we introduce
basic notation. In Section 2l we introduce the standard modules and
begin to study the effect of restriction and extension of scalars on them.
In order to complete the description of extension we need to construct
certain filtrations, which we do in Section 3| using Demazure operators.
In Section [4] we introduce objects with nabla and delta flags, define
their characters and show that these subcategories are preserved by
the translation functors. In Section [5| we complete the classification,
recall Soergel’s conjecture and show that it implies character formulae
for all indecomposable singular Soergel bimodules.

1. Bimodules and homomorphisms
Fix a field k of characteristic 0. We consider rings A satisfying
(1.0.5) A = ®;50A" is a finitely generated, positively graded

commutative ring with A° = k.

We denote by A-Mod and Mod-A the category of graded left and
right A-modules. All tensor products are assumed to take place over
k, unless otherwise specified. If A; and A; are two rings satisfying
(1.0.5) we write A;-Mod-As for the category of (Aj, As)-bimodules,
upon which the left and right action of k& agrees. As all rings are
assumed commutative we have an equivalence between A;-Mod-A, and
A1 ® Ay-Mod. We generally prefer to work in A;-Mod-A,, but will
occasionally switch to A; ® A>-Mod when convenient.

Given a graded module M = ®M" we define the shifted module
M(n] by (M[n])® = M™*. The endomorphism ring of any finitely
generated object in A-Mod, Mod-A or A;-Mod-A, is finite dimensional
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and hence any finitely generated module satisfies Krull-Schmidt (for
example, by adapting the proof in [Pie]).
Given a Laurent polynomial with positive coefficients

P = Z a;v' € N[v,v™]
and an object M in A-Mod, Mod-A or A;-Mod-A,, we define
P-M =P M[i*.

If P,Q € Njv,v™!] and M and N are finitely generated modules such
that

P-M~PQ N
we may “cancel P” and conclude (using Krull-Schmidt) that
M=2Q-N.

This will prove to be a useful notational convenience.

Given two modules M, N € A;-Mod-Ay a morphism ¢ : M — N of
(ungraded) (A;, Ay)-bimodules is of degree i if ¢(M™) C ¢(N™) for
all m € Z. We denote by Hom(M, N)? the space of all morphisms of
degree 7 and

Hom(M, N) = € Hom(M, N)'.
i€z
We make Hom (M, N) into an object of A-Mod-B by defining an action
ofa€ Aand b € B on f € Hom(M, N) via

(afb)(m) = f(amb) = af(m)b

for all m € M. If M and N are objects in A-Mod we similarly define
Homu(M,N) € A-Mod. (We will only omit the subscript for mor-
phisms of bimodules but will sometimes write Hom 4,4, (M, N) if the
context is not clear. We never use Hom(M, N) to denote external (i.e.

degree 0) homomorphisms.)
One may check that, if P,Q € N[v,v™!], then

Hom(P - M,Q - N) = PQ - Hom(M, N).
where P — P denotes the involution on N[v,v™!] sending v to v,

In the sequel we will need various natural isomorphisms between
homomorphism spaces, which we recall here. Let A;, A, and Az be
three rings satisfying (1.0.5). Let M,; € A;-Mod-A; for ¢,j € {1,2,3}.
In A;-Mod-As one has isomorphisms

Hom g, -4, (M1 @4, Maz, M3)

06) = HOmAI,AQ(Mlz,HOHlAg(Mgg,Mlg))

= Hom g, 4, (Mas, Homa, (Mi2, Mi3))
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because all three modules describe the same subset of maps My X
Msy3 — M;i3. For similar reasons, if N € A;-Mod one has an isomor-
phism in A;-Mod,

(108) I‘IOH]A1 <M12 ®A2 Mzg, N) = HOIHA2 (M23, I‘IOIIlA1 (M127 N))

Furthermore, this is an isomorphism in A; ® A3-Mod if both sides are
made into A; ® Az-modules in the only natural way possible.

If M35 is graded free of finite rank as a right As-module one has an
isomorphism

(109) I‘IOI’IlA2 (Mgz, Mlg) = M12 ®A2 I‘IOHIA2 (Mgg, AQ)

in A;-Mod-Aj3. Indeed, there is a natural map from the right hand to
the left hand side, which is an isomorphism under the above assump-
tions. (The structure of both sides as an object in A'-Mod-A3 is again
the natural one).

2. Invariants, graphs and standard modules

In this section we introduce standard modules, which are the build-
ing blocks of Soergel bimodules. Due to the inductive definition of
Soergel bimodules, it will be necessary to be able to precisely describe
the effect of extension and restriction of scalars on standard modules.
Restriction turns out to be straightforward (Lemma [2.2.3). Extension
of scalars is more complicated, and we first need to define certain aux-
illary (R, R)-bimodules R(p).

The structure is as follows. In Section 2.1 we define what it means
for a representation to be reflection faithful and recall some facts about
invariant subrings. In the Section we define standard objects and
analyse the effect of restriction of scalars on them. In Section we
define the bimodules R(p) and in Section we use them to describe
extension of scalars. In Section [2.5| we introduce the notion of support,
which will be essential in what follows.

2.1. Reflection faithful representations and invariants. Let
(W, S) be a finite Coxeter system and recall that we denote by

T = U wSw™!

weWw

the reflections in W. A reflection faithful representation of W is a finite
dimensional representation V' of W such that:

(1) The representation is faithful,
(2) We have codim V* =1 if and only if w is a reflection.

If W is finite it is straightforward to see that the geometric represen-
tation ([Hul, Proposition 5.3) is reflection faithful because it preserves
a positive definite bilinear form. If W is infinite, this is not the case in
general. However, one has:
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PrOPOSITION 2.1.1 ([So6], Proposition 2.1). Given any Cozeter
system (W, S) there exists a reflection faithful representation of W on
a finite dimensional real vector space V.

For the rest of this chapter let us a fix a reflection faithful repre-
sentation V' of W over a field of characteristic zero.
Because of our assumptions all reflections t € T act via

(2.1.1) t(\) = A — 2k, (Ao,

for some linear form h; € V* and vector v, € V. The pair (hy,v;) is
only determined up to a some choice of scalars. However, one may
choose h; € V* such that

(2.1.2) vhy = hyif zsx™' =t

where we regard V* as a W-module via the contragredient action. The
elements h; € V* (which we will think of as equations for the hyper-
plane V') will be important in the sequel. For this reason we make a
fixed choice of the set {h; | t € T'} with the only restriction being that
(2.1.2)) should hold.

LEMMA 2.1.2. The elements of {hy | t € T} C V* are pairwise
linearly independent.

PROOF. Let us suppose that V¢ = V* for some reflections s,t € T.
For parity reasons st is not a reflection. However V*! is of codimension
at most 1 and hence must be all of V', as our representation is reflection
faithful. In other words st is the identity and so s = ¢t. This implies
the lemma. U

Let R be the graded ring of regular functions on V', with V* sitting
in degree 2. Because k is an infinite field we may identify R with the
symmetric algebra on V*. As W acts on V' it also acts on R on the left
via

(wf)(A) = f(w™A\) forall A€ V.

If w € W we denote by R the invariants under w. If I C S we
denote by R! the invariants under W;. Recall that 7(I) denotes a
Poincaré polynomial of W} (see Section . One has the fundamental
theorem:

THEOREM 2.1.3. The ring R is a graded free module over R'. One
has an isomorphism of graded R'-modules:

~7(I)- R
We will return to this theorem in Section [3| where we give a sketch

of a proof. The following corollary (which may be seen as a relative
version of the above statement) will also be important.
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COROLLARY 2.1.4. Let I C J be subsets of S. Then R is a graded
free module over R’ and one has

in R7-Mod.

Proor. Using the above theorem and the transitivity of restriction
we conclude that there exists an isomorphism

7(I)- R =7(J) R’

in R’-Mod. However 7(.J)/7(I) € N[v,v™!] by Corollary [1.2.4] and so
we may divide both sides by 7(I) to obtain the result. O

2.2. Singular standard modules. In this section we define “stan-
dard modules”. These are graded (R’, R”)-bimodules indexed by triples
(I,p,J) where I, J C S are finitary and and p € W,\W/W; is a double
coset.

DEFINITION 2.2.1. Let I,J C S be finitary, p € W \W/W; and
define K = I Np_Jp-'. The standard module indexed by (I, p,.J),
denoted IR;, is the ring RE of Wi-invariant functions in R. We make
IR; into an object in R'-Mod-R’ by defining left and right actions as
follows:

r-m=rm fOTTERICLndeIRpj

m-r=m(p_r) form € IRpJ andr € R’

(where rm and (p_r)m denotes multiplication in RX). If I = J = ()
we write R, instead of 'R .

This action is well-defined because if r € R! (resp. r € R’) then
r (resp. p_r) lies in RE. 1In the future we will supress the dot in
the notation for the left and right action. If p contains id € W we
sometimes omit p and write simply ‘R’

EXAMPLE 2.2.2. Some examples of standard objects.

(1) If either I or J is empty then I N\ p_Jp~* = 0 for all p €
W \W/W; and hence

'R/~ R

with the (RY, R7)-bimodule structure as in the definition.

(2) If I and J are both non-empty, the graded dimension of IR;
usually varies across double cosets. For example, if W = S5 is
the symmetric group on three letters and I = J consists of one
simple reflection then W contains two (W, Wy)-double cosets
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which we will call p1 and py. Assume that id € p;. Then, as
graded vector spaces:

InJ ~ pI
Rpl = R ’
InJ ~
kRS, = R.
The following lemma describes the effect of restriction of scalars on
standard objects.

LEMMA 2.2.3. Letw e W, I,J C S be finitary and p = WrwW; be
the (Wy, W;)-double coset containing w. Then in RI-Mod-R’ we have
an 1somorphism:

ri(Ru)ps = 7(1,p,J)- 'R
Furthermore, if I C K, J C L are finitary and ¢ = WxpW, then

InJ N%(Kaq,L) KpL
RK(Rp)RL:m' q

in RX-Mod-R".

Proor. If v € W, then R, and R,, become isomorphic when
we view them as objects in R-Mod-R’. Similarly, if v € W; then
the map r — wr gives an isomorphism between R, and R,, when
regarded as objects in R/-Mod-R. Thus we may assume without loss
of generality that w = p_. Define K = I Np_Jp~' so that 7(I,p,J) =
7(K). The first isomorphism follows from the definition of 'R and the
decomposition

R27(K) - R*
of Theorem 2.1.3]

For the second statement note that, by the transitivity of restriction

and the above isomorphism we have

7(I,p,J) g ('"R))pe = (K, q, L) - "R} in R*-Mod-R".

As7(K,q,L)/7(I,p,J) € N[v,v"!] by Lemma|l.2.15| we may divide by
7(I,p,J) and the claimed isomorphism follows. O

2.3. Enmnlarging the regular functions. Our ultimate aim for the
rest of this section is to understand the effect of extending scalars on
standard modules. However, in order to do this we need to introduce
certain auxillary modules R(X) € R-Mod-R corresponding to finite
subsets X C W which we think of as an enlargement of a certain ring
of regular functions.

Given w € W we define its (twisted) graph

Gr, = {(w\,\) | A eV}

which we view as a closed subvariety of V' x V. Given a finite subset
X C W we denote by Gry the subvariety

Gry = U Gr,, .

weX
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We will denote by O(Gry) the regular functions on Gry which has the
structure of an R-bimodule via the inclusion Gry — V x V.
For all x € W consider the inclusion

iy 2 V=V xV
A= (A 27N,

This provides an isomorphism of V' with Gr, and an explicit identifi-
cation of R, and O(Gr,) as R-bimodules.
The following lemma will be important in the next section.

LEMMA 2.3.1. Let I C S be finitary. We have an isomorphism of
graded k-algebras

R@p R O(Cry,)).

PROOF. (See [So2], Lemma 2.2.2) Clearly the surjection R® R —
O(Gry,,) factorisises to yield a map

R®pt R — O(Gry, ).

We claim that this map is the required isomorphism.

As a left R-module, R ®pr R is isomorphic to 7(I) - R by Theo-
rem m The subvariety Gry,, is a union of || hyperplanes, each
of which is isomorphic to V under the first projection V. x V — V.
Hence Quot R ®p O(Gryy,,) has dimension [W| over Quot R. Let K
be the kernel of the above surjection. Because both modules have the
same dimension over Quot R after applying Quot R ® g — we see that
Quot R ®r K = 0. However, R @grw R is torsion free as a left R-
module and hence so is K. We conclude that K is zero, establishing
the claim. O

Recall that, for all ¢ € T, we have chosen an equation h; € V*
for the hyperplane fixed by t. We will denote by (h;) C R the ideal
generated by h;. We now come to the definition of the R-bimodules
R(X).

DEFINITION/PROPOSITION 2.3.2. Let X C W be a finite subset.
Consider the subspace

R(X) = { )e PR

zeX

ftac (
foralltGTandxthX CGSR

zeX

Then R(X) is a graded k-algebra under componentwise multiplication
and becomes an object of R-Mod-R if we define left and right actions
of r € R via

(rf)m = rfz

(f1)z = fa(ar)
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for f = (f.) € R(X). If a pair of subgroups W1,Wo C W satisfy
WX = X = XW, then R(X) carries commuting left Wi- and right
Ws-actions if we define

(uf)e = ufy-14 for uw € Wy,
(fv)e = fov forv e Ws.

If X = {x} is a singleton then R(X) = R,. If X = {z,y} consists of
two elements we write R, instead of R(X).

PROOF. It is straightforward to check that R(X) is a graded sub-
ring containing k. In order to see that the left and right R-operations
preserve R(X) it is therefore enough to check that (7).ex and (z7),ex
are elements of R(X) for all » € R. This is clear for (r),ex and for
(x7)rex it follows from the formula tg = g — g(vy)hy for g € V*. The
right Ws-operation clearly preserves R(p). For the left Wi-operation if

x,tr € X one has, using ,
(Wf)e = (Wf)tz = W(fo12 = fo-tia) € (W(hy-100)) = (ht).

The operations clearly commute and the fact that R(X) = R, if X =
{z} is immediate from the definitions. O

REMARK 2.3.3.
(1) We have defined R(X) for general finite subsets X C W but

will only ever need two cases:
(a) X =pis a (W, Wy)-double coset for finitary I,J C S.
(b) X = {x,tz} for some x € W and reflection t € T.

(2) The graded ring R(X) has a natural description in terms of
the Bruhat graph of W introduced in Section [I.1. Let Gx be
the full subgraph of the Bruhat graph of W with vertices X.
Then an element of R(X) can be thought of as a choice of
fz € R for every vertex x € G,, subject to the conditions that
fz— fy lies in (hy) whenever x and y are connected by an edge
labelled t. Under this description the left action of R s just
the diagonal action, and the right action s the diagonal action
“twisted” by the label of each vertex. The left W1- and right
Ws-actions are induced (with a twist for the action of W1) by
the left and right multiplication action of W1 ad Wy on X.

The following proposition gives a useful alternative description of
R(X).

PROPOSITION 2.3.4. Let X C W be a finite set. There exists an
exact sequence in R-Mod-R

0—RX)— PR~ P R/ ()

rxeX r<treX
tet

where the maps are as described in the proof.
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PRrROOF. The first map is the inclusion of R(X') into €, . v R, which
is clearly a morphism of R-bimodules. We describe the second map by
describing its components

R, — R,/(ht).
This map is zero if = ¢ {y,ty}. Otherwise it is given by
J = €apaf + (he)
where €, 4, is defined by
€ = { 1 if r <tx .
e -1 ifx>tx

This is a morphism in R-Mod-R because this is true of the quotient map
R, — R,/(h:) whenever © = y or = = ty. Lastly a tuple (f,) € ®R,
is mapped to zero if f, = fi, in R./(h;) for all x,tx € X and t € T,
which is exactly the condition for (f,) to belong to R(X). O

The following lemma explains the title of this subsection.

LEMMA 2.3.5. Let X C W be finite. The map
p:O(Gry) — R(X)
[ (@3 )wep
s well-defined, injective and a morphism in R-Mod-R.

PROOF. Any regular function f € O(Gry) is determined by its
restriction to all Gr, for x € X, which is just the tuple

(i2f)er € P R.

We claim that this tuple lies in R(X). Indeed, we just need to check
that i* f and i}, f agree on V' if z,tx € p for some t € T and this
is straightforward. It follows that the map is an injection of graded
k-algebras, in particular an injection in R-Mod-R. U

In general the map
p:O(Gry) — R(X)

is not surjective. The question as to when it is seems quite subtle, as
the following examples show.

EXAMPLE 2.3.6.

(1) We begin with an example which does not fit into the above
framework, but is nevertheless instructive. Let Z1, Zy and Z3
be three distinct one dimensional linear subspaces of k* and let

4 =21UZyU Zs.

The ring of reqular functions on Z is a proper subspace of
the space of triples (f1, f2, f3) with f; € O(Z;), such that
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f1(0) = f2(0) = f3(0) (which is the analogue of R(X) above).
Indeed, both rings are graded and the dimensions of the graded
components are (1,2,3,3,...) and (1,3,3,3,...) respectively.

(2) It is a straightforward consequence of Lemma that iof p is
a left of right coset of a finite standard parabolic subgroup then
p s always an isomorphism.

(8) We now give an example where p is not surjective. This exam-
ple was pointed out by Matthew Dyer. Consider W = Sy acting
via permutations of coordinates on V. = k*. We may identify
R = k[X4, X5, X3, Xu] with W acting via w(X;) = Xy). De-
note the simple reflections by r,s,t indexed so that rt = tr.
Let I = J = {r,t} and consider the double coset p = WisW.
We claim that

O(Gr,) € R(p).

Indeed O(Gr)) is cyclic as an R ® R-module and we will see
in Theorem of the next section that

R®@pi 'R} @ps R = R(p).

If p: O(Gr,) — R(p) were sujective, then R(p) would also be
cyclic and hence IR;Z would be cyclic as an R @ R7-module.

We claim however, that IR; is not cyclic as an R @ R’-
module. This is seen already in degree 2. The image of RT@ R’
acting on 1 in IR; >~ R in degree 2 consists of

(X1 + Xo, X3+ Xy, Xo + X,) C R

(4) However it might be still true that, if I, J C S are finitary then
RN is generated by the subrings R and R’. This is true for
the symmetric group S, acting as above on k[ X1, Xo, ..., X,] if
k is of characteristic 0, as one may see by considering Newton
power sums. This trick was pointed out by Olivier Mathieu.

Because R(X) has the structure of a graded k-algebra we have an
injection
R(X) — Hom(R(X), R(X)).
However, as R(X) is generally not cyclic as an R-bimodule, R(X) may
have more endomorphisms. The following shows that this is not the
case.

PROPOSITION 2.3.7. For all finite subsets X C W we have
Hom(R(X), R(X)) = R(X).

PROOF. For the course of the proof it will be more convienient to
regard R(X) as graded left R ® R-module. Let ¢ : R(X) — R(X) be
a morphism in R ® R-Mod and denote by f = (f.)zex the image of 1.
Choose m = (m,) € R(X). We will be finished if we can show that
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w(m), =m,f, for all z € X. Let us choose z € X and let ¢ € R® R be
a function that vanishes on Gr, for z # y but not on Gr,, and let (g.)
denote its image in R(X) (the result of acting with g on 1 € R(X)).
Note that

(gm)x = 5x,zgazmx

and so gm is in the image of R ® R. Hence

g-0(m). = (gp(m)). = ¢(gm). = f.g.m.

and hence ¢(m), = m, f, as g, is non-zero. O

2.4. Standard modules and extension of scalars. The aim of
this subsection is to study the effect of extension of scalars on standard
modules. That is, we want to understand the bimodules

R¥ @pr 'R} @gs R* € R*-Mod-R"

where K C I and L C J are finitary. The key is provided by the
bimodules R(X) introduced in the previous section.

For the rest of this subsection fix finitary subsets I,J C S and a
double coset p € W;\W/W;. Recall that the bimodules R(p) have
commuting left W~ and right Wj-actions. Of course we can make
this into a left W; x W action by defining (u,v)m = umv™! for all
m € R(p).

THEOREM 2.4.1. Let I D K and J D L. There exists an isomor-
phism
R¥ @pi 'R} @ps R* = R(p)"V<™"r
in RE-Mod-R".

The theorem will take quite a lot of effort to prove. In Lemmas
2.4.2 and below we construct a morphism

R®@pi 'R} @ps R — R(p).

commuting with natural actions of Wx x Wy on both sides. By con-
sidering invariants one may reduce the theorem to showing that this
map is an isomorphism.

Let us first describe the W x W actions. By Proposition [2.3.2| and
the discussion at the beginning of this section there is an W; x W;-
action on R(p). We define a W; x Wj-action on R ®pr 'R Qs R
via

(u,v)f @ g h=uf ®g®vh.
It is easy to see that this action is well-defined.

The following lemma tells us how to find the standard module ‘R;

as a submodule of R(p).

LEMMA 2.4.2. In R'-Mod-R’ we have an isomorphism
WixWy ~ InJ
R(p)"r s = IR
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PROOF. Let K = I Np_Jp~* and choose f € R(p)"V'*Ws. If u €
Wi then up_ = p_v for some v € W; and f, = ((u,v)f), = uf, .
In other words f, € R¥. Hence we obtain a map

R(p)WIxWJ N IR;
(fz) — Jo_

which is obviously injective and a morphism in R!-Mod-R”.

It remains to show surjectivity. To this end choose m € IRp‘] and
consider the tuple f = (f;) € @.epR where, for each x € p we choose
u € Wrv € Wy with £ = up_v and define f, = um. This is well
defined because if up_v = u'p_v" with u, v’ € W; and v,v" € W; then
vl € Wy Np_Wyp~' = Wk by Kilmoyer’s Theorem ((1.2.8)), and
hence um = u'm as m is invariant under Wy. The tuple (f,) also lies
in R(p) as if x and ¢z both lie in p then by Proposition either
t € Wr (in which case fi, = tf,) or tx = xt’ for some reflection ¢’ in W
(in which case f, = fi.). Lastly, it it easy to check that f is W; x W}
invariant. As f gets mapped to m under the above map, we see that
the map is indeed surjective. Il

Having identified 'R} as a (R', R”)-submodule of R(p) we obtain
by adjunction a morphism

i R@pr 'R @ps R — R(p).

We will see below that this is an isomorphism. However first we need:

LEMMA 2.4.3. The morphism . commutes with the Wy x W ;-actions
on both modules.

PRroOOF. This is a technical but straightforward calculation. Let
a=1T1MmMmQEry € RQpr IR; ®ps R and (u,v) € W x W;. We want
to show that p((u,v)a) = (u,v)u(a).

Under p, a gets mapped to f = (f.) € R(p) where

f. =mri(zm)(zrsy)
if z = ap_y with x € Wy and y € W, Similarly (u,v)a = ury@Mmaevry
gets mapped to f = (f.) € R(p) where
fo = ur(xm)(zory).
We need to show that (u,v)f = f. This follows from

(4, 0)f)2 = ufu1sp = ulry(u™ om)(u zory)) = ury(zm) (zvry) = f..
[l

ProOOF OF THEOREM [2.4.1] By considering Wx x Wy, invariants
it is enough to show that the morphism p construted above is an iso-
morphism. This will follow from two facts which we verify below:

(1) Both R(p) and R ®p: 'R} ®ps R are isomorphic to 7(p) - R as
graded left R-modules;
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(2) The morphism g is injective.
Indeed (1) says that each graded component of R(p) and R® g1 'R @
R is of the same (finite) dimension over k. Using (2) we then see
that ¢ is an isomorphism on each graded component and hence is an
isomorphism.
We start by establishing (1) for R ®ps IR; ®ps R. Choose w € p.
By Theorem we have an isomorphism of left R-modules:

R®@pt Ry ®@ps R=7(1)7(J) - R.
Hence, by Lemma we have (again as left R-modules):
7(I,p,J)- Ropr 'R} @ps R=7(1)7(J)- R
Dividing by 7(1, p, J) and using Lemma we conclude that
(2.4.1) R®p 'R} ®ps R=F(p)- R in R-Mod

as claimed.
It seems much harder to establish (1) for R(p). This is Corollary
of the next section, which we prove using Demazure operators.
The rest of the proof will be concerned with (2). Choose again
w € p. Using Lemma [2.3.1] we may identify R ®pr R, ®ps R with the
regular functions on the variety

Z = {(A,ﬂ,y)

We have an obvious projection map Z — Gr, sending (A, i1, v) to (A, v)
and hence we have a morphism in R-Mod-R (in fact of k-algebras)

O(Gr,) — R ®pt Ry @ps R.

A = up for some u € Wy
i = wov for some v € W;

}CVXVXV.

Taking w = p_ this map lands in R ®zr 'R} Qs R regarded as a sub-
module of R®pr R, ®prs R. We conclude the existence of a commutative
diagram

O(Gr,)

/ X
R®p 'R} @ps R—"— R(p)

where p is as in Lemma [2.3.5]

We now argue that all arrows become isomorphisms after tensoring
with Quot R. As p is injective and Quot R is flat over R it is enough to
show that all modules have dimension |p| over Quot R after applying
Quot R ®pg —. This is indeed the case:

(1) O(Gr,): For the same reasons as in the proof of Lemma m
(2) R®pt 'R ®ps R: This follows from (2.4.1)
(3) R(p): By applying Quot R ®g — to the exact sequence in

Proposition [2.3.4]
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We conclude that all maps (in particular ) become isomorphisms after
applying Quot R ®p —.

To conclude the proof, note that by the above arguments R ®pgr
'R} @ps R is torsion free as a left R-module. Hence y is injective if and
only if this is true after applying Quot R ®z —. Thus g is injective as
claimed. O

We may use this theorem to determine the morphisms between
standard modules. Recall that ‘R was defined as a subring of R, and
therefore has the structure of a k-algebra compatible with its (Rf, R7)-
bimodule structure. Therefore we certainly have an injection

'R7 — Hom('R],'RY).
The following proposition makes this more precise.

COROLLARY 2.4.4. Forp,q € W \W/W; we have

IRJ pr p— q
IpJ IpJy _ P
Hom ('R}, 'R;) { 0 otherwise.

PRrROOF. Extension of scalars give us an injection
Hom('R},'R)) — Hom(R @pi 'R} @ps R, R ®p1 'R} ®ps R)

because we may again restrict to R/-Mod-R”’. By the above theorem
the latter module is isomorphic to Hom(R(p), R(q)). This is 0 if p # ¢
because Hom(R,, R,) = 0 if  # y. Otherwise Hom(R(p), R(p)) =
R(p) by Proposition , and so Hom('R;, 'RY) consists of those a €
Hom(R(p), R(p)) for which a(1) € 'RJ. Hence Hom('R],'R)) = 'R/
as claimed. g

2.5. Support. Let X be an affine variety over k£ and A its k-
algebra of regular functions. We will make use of the equivalence be-
tween (finitely-generated) A-modules and (quasi)-coherent sheaves on
X (see [Har], Chapter II, Corollary 5.5). If M is an A-module, and M
is the corresponding quasi-coherent sheaf on X, then the support of M,
which we will denote supp M by abuse of notation, consists of those
points z € X for which M, # 0. The support of a section m € M,
denoted suppm, is the support of the submodule generated by m. It
follows from the definition that if M’ — M — M" is an exact sequence
of A-modules then

(2.5.1) supp M = supp M’ U supp M".

If M is finitely generated then the support of M is the closed subvariety
of X determined by the annihilator of M ([Har], II, Exercise 5.6(b)).
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Let f : X — Y be a map of affine varieties and A — B be the
corresponding map of regular functions. If M and N are A- and B-
modules respectively, then

(2.5.2) f(supp N) C supp(alN) C f(supp N),
(2.5.3) supp(B ®4 M) = f~!(supp M).

The first is an exercise, and the second is Exercise 19(viii), Chapter 3
of [AM] for finitely generated M, but seems to be true in general (in
any case we only need it for finitely generated M). It follows that if f
is finite (hence closed) and N is finitely generated, then

(2.5.4) f(supp N) = supp(aNV).

The rest of this section will be concerned with applying notions of
support to objects in R'-Mod-R”, where I, J C S are finitary. This is
possible as we may regard any such object as an R ® R/-module. We
identify R! ® R’ with the regular functions on the quotient V/W; x
V/Wj. Thus, given any M € R!-Mod-R’, supp M C V/W; x V/W7.

In Section we defined the twisted graph Gr, C V x V as well
as Gr, for finite subsets C' C W. For a double coset p € W, \W/W;,
denote by ! Grg the image of Gr, under the quotient map V' x V' —
V/W; x V/W;. The subvariety ! Gri is equal to the image of Gr, for
any x € p and thus is irreducible. Given any set C' C W \W/W;, we

define
Grl = U ! Grg
peC
which we understand as a subvariety if C' is finite, and as a set if C' is
infinite.

We will be interested in M € R!-Mod-R’ whose support is con-
tained in /Gr{, for some finite set C' C W;\W/W;. Given finitary
I C K and J C L we have functors of restriction and extension of
scalars between R!-Mod-R’ and R¥-Mod-R*. Because the inclusion
RE @ RF — R' ® R’ corresponds to the finite map

VIWr x V/Wy — V/Wg x V/Wp
we may translate (2.5.3)) and (2.5.4) as follows:

LEMMA 2.5.1. Let I C K and J C K be finitary subsets of S and
let

qu: WA\W/W; — Wi \W/Wy
denote the quotient map.
(1) If M € R'-Mod-R’ and supp M = 'Grl, for some finite subset
C C W \W/W; then supp(rx Mpr) = KGquu(C).
(2) If N € RE-Mod-R" and supp M = IGré, for some finite subset
C" C Wg\W/Wp, then supp(R! @gx M @pr R?) = IGrgu,l(C,).
The same is true with “=" replaced with “C” throughout.
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Given a set C C W;\W/W; and M € R!-Mod-R’ we denote by
I'cM the submodule of sections with support in ! Gré. That is

IeM = {me M | suppm C 'Grl}.

Recall from Proposition that the Bruhat order on W descends
to a partial order on W;\W/W; and that, given p € W, \W/W;, we
write {< p} for the set of elements in W;\W/W; which are smaller
than p (and similarly for {< p}, {> p} and {> p}). We also abbreviate

'Grl, = 'Gr{.,, and To,M =T,y M

and analogously for ! Grip, L ,M, ! Grép etc. The following additional

notation will be useful:
"M = M/T 2, M
I>M =T,M/T,M
I'>M =T5,M/Ts,M.

Recall that in Subsection we defined R(X) € R-Mod-R for any
finite subset X C W.

LEMMA 2.5.2. The support of f = (f.) € R(X) is Gr., where
C={reX|f. #0}

PROOF. Because we may identify R, as an R® R-module with the
regular functions on the irreducible Gr, it follows that every 0 # m €

R, has support equal to Gr,. The lemma than follows by considering
the embedding of R(X) in @,y R.. O

LEMMA 2.5.3. Let I,J C S be finitary and p € W \W/W;. The

support of any non-zero m € IR; I8 IGrz.

Proor. This follows from (2.5.4), Lemma above and the fact
that we may view 'Ry as an (R', R”)-submodule of R(p) (Lemmal2.4.2).
U

3. Equivariant Schubert calculus

In this section we introduce Demazure operators. We use them for
two purposes:

(1) To establish the self-duality (up to shifts) of certain rings R’,
viewed as modules over invariant subrings RY C R’ (Section
59).

(2) To construct filtrations on the modules R(p), where p C W\
W/Wj is a finite double coset (Section [3.3).
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3.1. Demazure operators. In this section we recall the defini-
tion and basic properties of “classical” Demazure operators essentially
following [Dem]|. Recall that (W,S) is a Coxeter system, V' is a re-
flection faithful representation of W and R denotes the ring of regular
functions on V.

Ift € W is areflection and f € R then f—tf vanishes on the hyper-
plane fixed by ¢ and hence is divisible by h;. We define the Demazure
operator

O R[2] = R
by
o (f) = f2_httf

It is a morphism of R*-modules.
Let f,g € Rand t € W be a reflection. The following properties of
0 are immediate:

(3.1.1) Of =0 ifand onlyif tf=f

(3.1.2) 9((0cf)g) = 0(f (D))

Let I C S be a finitary subset and W; C W the corresponding
finite parabolic subgroup. An element f € R is Wiy-anti-invariant if
wf = (=1 f for all w € W;. This is equivalent to requiring that
tf = —f for all reflections t € W;. Denote by d; the product

di= [ me R
tewnT

which may be seen to be Wi-anti-invariant. Let J; : R — R denote
the “projection onto Wi-anti-invariants” operator:

1
i 2 U

weWr

Jr =

We recall the following theorem, due to Demazure [Dem)| and Bern-
stein, Gelfand and Gelfand [BGG].

THEOREM 3.1.1. Let I C S be a finitary subset.

(1) The Wi-anti-invariant elements of R build a cyclic R -submodule
of R generated by dj.

(2) If st...u is a reduced expression for the longest element w; €

Wi then
050y ... 0y = Jr/dy
considered as endomorphisms of R.

(8) Let st...u be an expression in the elements of I of length n.
Then the operator

0s0; ... 0y : R[2n] — R
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18 zero unless st...u is a reduced expression, in which case it
only depends on w = st...u € W and not on the choice of
reduced expression. Thus one obtains well defined operators

Ow : R[20(w)] — R

for all w e Wry.
(4) The elements {0, (d;) | w € Wi} give a free graded basis for
R as an R'-module. In particular,

R=7(W;)- R
as an R'-module.

COMMENT ON PROOF: (1) is straightforward. For an elegant proof
of (2) see Proposition 1 in [Dem]. For (3) note that, if s,t € S are
simple reflections such that st has finite order then, taking W; to be
the parabolic subgroup generated by s and ¢, (2) implies that that O
and 0, satisfy the braid relations. (3) is then a consequence of (2) and
Tit’s theorem (see [Bo|, p. 16, Prop. 5) that one obtains all reduced
expressions for an element by applying braid relations to a fixed reduced
expression. It is straightforward to see that the {0,(d;) | w € Wi}
span R as an R module. Then, assuming the existence of a relation of
minimal degree, one may always apply a Demazure operator to obtain a
non-trivial relation of smaller degree, which provides the contradiction
establishing (4). d

3.2. Duality. As a first application of Demazure operators we will
establish the self-duality (up to shifts) of certain invariant subrings of
R. Given a finite parabolic subgroup W; C W the the Demazure
operator 0,,, corresponding to the longest element of W; allows us to
define an R!-bilinear form on R via

Rx R — R'[—2((w;)]
(f.9) — (f.9)r = 0w, (fg).

This form is R/-bilinear because ,, is a morphism of R/-modules and
is well-defined because the image of f € R under 9,,, is Wj-invariant

by .

LEMMA 3.2.1. Let x,y € Wy. One has

(0pdy, 0yds)1 € Spuyy + (RT)T

where (RT)* C R denotes the elements of positive degree.

PrROOF. Notice that

O, ((02d)(0yd)) = Ou, (d(0y-10,d))
by repeated application of . Now if xw; = y then
Op-10yd = Oy, (d) =1
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and the lemma follows in this case. If zwy # y there are two possibili-
ties:

(1) £(z™) +L(y) > L(z~ty), or

(2) ™) + Ly) = Lx™"y) < L(wo).
In case 1) 0,-10, = 0. In case 2) 0,-10,(d) is of degree strictly greater
than 0, and thus so is Oy, (d(0,-10,d)). O

We will now use this form to establish the self-duality of R[¢(w;)]
as an R'-module.

PrRoOPOSITION 3.2.2. The map
¢ R[{(wy)] — Hompr (R[¢(wy)], R')
given by

15 an ismorphism in R-Mod.

Proor. That the map is a morphism of R-modules follows from the
fact that, for all f,g,h € R we have (fg,h); = (f, gh);. The injectivity
of ¢ is equivalent to the non-degeneracy of (-,-); which follows from
Theorem [3.1.1] and the above lemma. As R!-modules we have

Hompw (R[((wr)], R") = Hompw (7(1)-R", R") = (I)-R" = R[((wy)]
and hence ¢ must be an isomorphism. O
COROLLARY 3.2.3. Let I C J be subsets of S. Then
Homps (R [(wy) — €(wy)], RY) 2 R [0(wy) — €(wy)].
PRrOOF. We have the following isomorphisms in R’-Mod:
() - Homps (R'[((wy) — ((w;)], R7) =
= Hompo (n(I) - R[((wy) — £(wr)], R?)
>~ Hompgs (R[((wy)], R7)

= R[l(wy)] (Proposition |3.2.2)
= (1) R'[l(wy) = l(wy)]
The corollary then follows by dividing both sides by 7 (I). O

3.3. Demazure operators on R(X). The aim of this subsection
is to define Demazure operators on R(X) and use them to construct
filtrations on R(p) for finite double cosets p C W, as well as invariant
subrings thereof. This discussion was influenced by [KT], where a
similar situation is discussed.

Recall that in Section we defined, for all finite sets X C W a
bimodule R(X) € R-Mod-R. Moreover, given subgroups Wy, Wy C W
such that W, X = X = XW,, the bimodule R(X) carries commuting
left Wi- and right Ws-actions.
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DEFINITION/PROPOSITION 3.3.1. Let X, Wy, Wy C W be as above.

(1) For all reflections t € Wy there exists an operator f — Oyf on
R(X), the left Demazure operator to t, uniquely determined
by

f—tf =2m(8f) for all f € R(p).
This is a morphism in R'-Mod-R.

(2) For all reflections t € Wy there exists an operator f — f0; on
R(X), the right Demazure operator to t, uniquely determined
by

f—ft=(f0)2h, for all f € R(p).
This is a morphism in R-Mod-R!.

PrROOF. We first treat the case of the left Demazure operator.
Uniqueness is clear as R(X) is torsion free as a left R-module. Rewrit-
ing the condition at = € p we see that, if f € R(X), 9,f must be given

by
f:v - tft:r
Of)e = ——.
(0:F) 2h,
A priori this defines an element of Quot R. However, by definition of
R(X), f: — fir and hence f, — tfy, lies in (h;). Thus (9,f). € R for all
reX.
It remains to see that 0;f € R(X). Because f —tf € R(X) it is

clear that

(atf):c - (atf)t’sc < (ht’>
whenever t' # t and z,t'z € X. Writing out the definitions, on also
sees that

(0cf)e = (O )t
it t-anti-invariant, and hence (0,f). — (0;f)wz € (hy). It follows that
Oy f € R(X) and hence the left Demazure operator to ¢ exists.

It is clear that the left Demazure operator for ¢ € W; commutes
with multiplication on the left with a t-invariant function. For the right
action of r € R on f € R(X) one has

T)x — t(fr T x — Jtx
(8t(fr))3; — (f ) th(f )t _ f zhtft - ((atf)r)x
In particular, f — 0, f is a morphism in R'-Mod-R as claimed.

We now treat the case of the right Demazure operator for a reflec-
tion t € Wy. The operator is clearly unique if it exists and f0; for
f € R(X) must be given by

f:v - f:ct

(fat>:r - tht

Similarly to above one checks that (f0;), € R for all z € X and then
that f0, € R(X), using the definition of R(X) and (2.1.2). It is then
straighforward to see that f +— f0; is a morphism in R-Mod-R'. [
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Recall from Section [2.5/that the support of an element f € R(X) is
easy to calculate: it is the set Gr, where A = {x € X | f, # 0}. The
following lemma is then an immediate consequence of the definition of
the Demazure operators.

LEMMA 3.3.2. Let f € R(X) such that supp f C Gr, for some
ACX.

(1) If t € Wy is a reflection then supp Orf C Gryua-
(2) If t € Wy is a reflection then supp f0; C Gr g 4,-

For the rest of this section fix two finitary subsets I, J C S as well
as a double coset p € W;\W/W;. We now come to the main theorem
of this section, which purports the existence of certain special elements
in R(p).

THEOREM 3.3.3. There exists ¢, € R(p) for all x € p, unique up
to a scalar, such that

(1) deg ¢ = 2(¢(py) — £(2)),
(2) supp ¢, C Gr, and (¢;). # 0.
The set {¢w | w € p} builds a basis for R(p) as a left or right R-module.

PROOF. Let us first assume that there exists ¢, € R(p) forall x € p
satisfying the conditions of the theorem. We will argue that they are
then uique and form a basis for R(p) as a left or right R-module.

Suppose that f € R(p) has support contained in Gr, for some
downwardly closed subset A C p and choose * € A maximal. As
fte = 0 for all t € T with = < tx € p, from the definition of R(p) we
see that f, is divisible by

ay = H hy.

teT
z<tr€p

Asdega, =2|{t € T | x < tx € p}| = 2({(p4+) — ¢(x)) by Proposition
1.2.16| we see that (¢.). is a non-zero scalar multiple of a,,. Hence, we
may find r € R such that

supp(f — r¢z) C Gryqq) -

It follows by induction that the {¢,} span R(p) as a left R-module.
They are clearly linearly independent when we consider R(p) as a left
R-module by the support conditions. Hence they form a basis for R(p)
as a left R-module. Identical arguments show that they are also a basis
for R(p) as a right R-module.

We can also use the above facts to see that ¢, for x € p is unique up
to a scalar. Indeed, if ¢, and ¢/, are two candiates we may find A € k
such that ¢, — A¢/, is supported on Gro,, («}- By the above arguments
¢ — MA@, has degree strictly greater than 2(¢(py) — ¢(z)) and hence is
Zero.



3. EQUIVARIANT SCHUBERT CALCULUS 53

It remains to show existence. To get started consider ¢ = (¥,) €
@yep R defined by

9 _{ ap, ifzx=p_
10 otherwise.
Clearly ¥ € R(p) and degv = 2(¢(p; — ¢(p-)) (again by Proposition
1.2.16|). Hence we may set ¢, = 1.

Now assume by induction that we have found ¢, for all z € p with
¢(x) < m and choose y € p of length m. By Howlett’s theorem ([1.2.9))
there exists a simple reflection s € W; or ¢ € W; such that either
y> sy €pory>ytep. Inthe first case consider ¥ = 05¢5, € R(p).
We have

(1) degd) = deg ¢sy — 2 = 2(¢(py) — £(y)),
(2) suppd C Gr,, (by Lemma and v, # 0 because (¢gy)sy 7#
0.

Hence we may set ¢, = ¢. Similarly in the second case we may take
¢y = ¢y0;. It follows by induction that the elements {¢, | w € p}
exist. 0

The first corollary of this theorem is a description of R(p) as a left
R-module, needed during the proof of Theorem [2.4.1].

COROLLARY 3.3.4. As left graded R-modules we have an isomor-
phism

R(p) =7(p)- R.
Proor. If P =3 v2E@)=4p+) it follows from the theorem that
R(p) 2 P- R in R-Mod.

However
P = p2tp+) Z v2U=) = pllp+) =) (p) = v PP 1 (p) = 7 (p)
xEp
using the self-duality of 7(p) (1.2.4) for the third step. O

COROLLARY 3.35. Let K C I, L C J and C C Wi \W/Wy, be
downwardly closed. For all ¢ € C' maximal such that ¢ C p we have an
isomorphism in RX-Mod-R*":

TeR(p)"V W [Ty R(p) V< WE 2 KRE[2(0(q4 ) — L(po))]-

PROOF. For the course of the proof let us write ¢¥, (resp. ¢7) for
the functions in R(p) (resp. R(q)) given to us by Theorem[3.3.3] These
are well defined up to a scalar and we make a fixed but arbitrary choice.
Also denote by qu : W — Wi \W/W|, the quotient map.

The map (f2)zep — (fz)zeq from R(p) to R(q), in which we forget
fo for x ¢ q, allows us to identify I'qy-1(c)R(p)/Tqu-1(c\{gp) R(p) with
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an ideal in R(q). Keeping this in mind we obtain a map
R(q)[2(€(g+) — L(p+))] = Tau-1()R(P) /T qu-1(c\fap R(P)

L ¢§+'
As 050, = ¢, 0, = O for all s € K and t € L, ¢f, is Wx X Wp-
invariant. Thus (¢}, ), # 0 for all 2 € ¢, and the above map is injective.

Let us consider the image of ¢2 € R(p) for x € ¢ in the right hand
side. It has degree

deg ¢f +deg ¢y, = 2({(p+) — {(x))

and has support contained in Gr.,. Hence, by the uniqueness state-
ment in Theorem [3.3.3] it is a non-zero scalar multiple of (the image
of) ¢P. Tt is a consequence of Theorem that ¢P for x € ¢ build a
basis for the right hand side as a left R-module, and we conclude that
the map is an isomorphism.

The Wg x Wy action on R(p) preserves both I'yy-1(cyR(p) and
L qu-1(c\{qp) F(p) and hence we have a Wx x Wp-action on both modules.
As Wy x W, acts through k-algebra automorphisms the above map
commutes with the Wy x Wp-action on both modules. Taking Wy x
Wy -invariants (which is exact as we are in characteristic 0) and using
Lemma [2.4.2] we follow that

FRE[2(6(01) 02 ))) 2 (Does(cy R) W (D s g () V0

However, by (2.5.4)), (Tqu-1(c)R(p))"V< Wt = To(R(p)"V=*"r) and sim-
ilarly for I'qu-1(c\ (g1 R(p). The claimed isomorphism then follows. [J

In the sequel it will be useful to have the above corollary in a slightly
different form.

COROLLARY 3.3.6. Let J D K and C C W \W/Wg be downwardly
closed. If ¢ € C' is mazimal and p D q then we have an isomorphism

in RI-Mod-RE
Lo('RY @ns B¥)/Toy (R) @ BY) 2 RER(0(q,) - €(p2)]
Proor. By Theorem [2.4.1] we have an isomorphism
IR;Z ®RJ RK o~ R(p)W[XWK

in R’-Mod-R¥. The claim is then an immediate consequence of Corol-

lary O

4. Flags, characters and translation

In this section we define and study the categories of objects with
nabla and delta flags. These categories provide the first step in the
categorication of the Hecke category.

Recall from the introduction to this chapter than to any M €
RI-Mod-R’ one may associate two filtrations, and that M has a nabla
(resp. delta) flag if these filtrations are exhaustive and the successive
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quotients in the first (resp. second) filtration are isomorphic to a fi-
nite direct sum of shifts of standard modules. Given an object with a
nabla or delta flag it is natural to consider its “character” in H”, which
counts the graded multiplicity of standard modules these subquotients.

The key results of this section are Theorems |4.1.5( and [4.3.3] which
tell us that if J C K then the functors of restriction and extension
of scalars between R!-Mod-R’ and R!-Mod-R¥ restrict to functors
between the corresponding categories of objects with nabla or delta
flags. Moreover, after normalisation, one may describe the effect of
these functors on the characters in terms of multiplication in the Hecke
category.

The structure of this section is as follows. In Section [4.1] we define
the subcategory of modules with nabla flags and the nabla character,
and begin the proof of Theorem The proof involves certain tech-
nical splitting and vanishing statements, which we postpone to Section
[4.2] In Section we define the subcategory of modules with delta
flags and the delta character, as well as a duality which is used to
relate the categories of object with delta and nabla flags and prove

Theorem [4.3.3

4.1. Objects with nabla flags and translation. For the dura-
tion of this section fix finitary subsets I, J C S. Denote by R’ the
full subcategory of modules M € R!-Mod-R’ such that:

(1) M is finitely generated, both as a left R/-module, and as a
right R/-module;
(2) there exists a finite subset C' C W, \W/W; such that supp M C
IGrl.
Recall that we call a subset C' C W, \W/W; downwardly closed if
C={peW\W/W;|p<qfor some q € C}.

We now come to the definition of objects with nabla flags.

DEFINITION 4.1.1. The category of objects with nabla flags, de-
noted ' FZ, is the full subcategory of modules M € "R’ such that, for
all downwardly closed subsets C°C W \W/W; and mazimal elements
p € C, the subquotient

Lo M/Ten gy M

1s isomorphic to a direct sum of shifts of modules of the form IR; (which
is necessarily finite because M € TR7).

We begin with a lemma that simplifies the task of checking whether
a module M € 'R’ belongs to FZ. We call an enumeration py, pa, . . .
of the elements of W \W/W a refinement of the Bruhat order if p; < p;
implies that ¢ < j. If we let C(m) = {p1,p2,...,pm} then all the sets
C(m) are downwardly closed, and p,, € C(m) is maximal. Hence, if
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M € 'FL then TomyM/Topm-1yM is isomorphic to a direct sum of
shifts of 'Ry . In fact, the converse is true:

LEMMA 4.1.2 (Soergel’s “hin-und-her” lemma). Let py,ps,... and
C(m) be as above. Suppose M € 'R’ is such that, for all m, the
subquotient

LomyM /T cm-1yM
18 isomorphic to a direct sum of shifts of IRp{m. Then M € 1 FZ.
Moreover, if p = p,, then the natural map
Loy M/T o, M — TouyM /T cm-1yM
s an isomorphism.

PRrROOF. Let C C W \W/W; be a downwardly closed subset and
p € C' be maximal. We need to show that

LeM/Ten gy M
J

is isomorphic to a direct sum of shifts of modules of the form IRp.

Let p, p’ € W, \IW/W be incomparable in the Bruhat order. We will
see in the next section (Lemma that Extprg s ('R),'R7) = 0. In
particular, if p; and p;y; are incomparable in the Bruhat order then
Legir1yM /T e@—1yM is isomorphic to a direct sum of shifts of modules
IRZZ_ and IR;M. Hence, if we let C’ be associated to the sequence
obtained by swapping two elements ¢; and ¢; 1 we see that the natural
maps

CowyM/Toa-yM  — ToriryM/TonnM
FowM/Tei-yM  — TeainyM/TenM
are isomorphisms.

Now let C' C WA\W/W; be downwardly closed and p € C' maximal.
After swapping finitely many many elements of our sequence we may
assume C(m) = C and p,, = p and the first statement follows. The
second statement follows by taking C' = {< p}. O

We now want to define the “character” of an object M € I FZ. Tt
is natural to renormalise IR; and define

'V, = Ryl(ps))-

If p contains the identity, we sometimes omit p and write 1V,
By assumption, if M € 'FL we may find polynomials g,(M) €
N[v,v™!] such that, for all p € W;\W/W, we have

Ly M/T o, M = g, (M) - IV}Z'
We now define the nabla character by
chy : ! ]—‘é — Iy’

M > gM)'H).

pEW\W/W,;
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We now come to the definition of translation functors, which (up
to a shift) are the functors of extension and restriction of scalars. Note
that, if K C L are finitary subsets of S we have an inclusion RY ¢ RX.

DEFINITION 4.1.3. Let K C S be finitary.

(1) If J C K the functor of “translating onto the wall” is:
— 9% R"-Mod-R” — R'-Mod-R¥
M = Mgx[l(wk) — l(wy)].
(2) If J D K the functor of “translating out of the wall” is:
—-79% . R"-Mod-R” — R'-Mod-R"
M +— M ®gs RE.

REMARK 4.1.4. Of course it is also possible to define translation

functors “on the left”. We have chosen to only define and work with

translation functors acting on one side because it simplifies the exposi-
tion considerably.

The following theorem is fundamental to all that follows. It shows
that translation functors preserve the categories of objects with nabla
flags and that we may describe the effect of translation functors on
characters.

THEOREM 4.1.5. Let K C S be finitary with J C K or K C J.
(1) If M € ' FL then M - 795 € 1 FK.
(2) The following diagrams commute:

_ 9K 1]
IJ I K IJ I rJ
F Fh FL——1F
\L chy \L chy i chy l chy
—* JHK .vfl
IHJ IHK IHJ IHJ

Before we can prove this we will need a preparatory result.
PROPOSITION 4.1.6. Let J C K be finitary and
qu: WA\W/W,; — W \W/Wg
be the quotient map. Let C' C W \W/W be downwardly closed.
(1) If M € ' F then
(Lqu-1(cyM) g = To(Mpx).
(2) If M € 'FE then
(TeM) @i BT = Tu-10)(M ®px R7).

PROOF. (1) is a direct consequence of (2.5.4)). For (2) consider the

exact sequence
FeM — M — M/TcM.
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Because M € FJ the left (resp. right) module has a filtration with
subquotients isomorphic to a direct sum of shifts of ‘R with p € C
(resp. p ¢ C). Applying the exact functor — @z« R’ we obtain an
exact sequence

LeM @px R — M @gx R — M/Te¢M g R,

By exactness, the left (resp. right) modules have a filtration with
subquotients a direct sum of shifts of 'R) @ g R7 with p € C' (resp. p ¢

C). By Corollary [3.3.6, 'R ®zx R’ has a filtration with subquotients
isomorphic to (a shift of) 'R; with ¢ € qu™'(p). Moreover the support

of any non-zero element in ‘R is precisely /Gr; (Lemma [2.5.3). Thus
the above exact sequence is equal to

L1y (M ®@gx R?) — M ®@px R? = M/Tqy-1(0)(M @px R”)
which implies the proposition. U
We can now prove the Theorem [4.1.5]

PROOF OF THEOREM L. T.5l It is easy to see that M - 79% € IRK
using Lemma and the fact that R’ is finite over R¥ in the case
that J D K. We split the proof into two cases.

Case 1: Translating out of the wall (J D K ): We first prove part
(1) of the theorem. Let

qu : W[\W/WK — W[\W/WJ

be the quotient map. Because qu is a surjective morphism of posets we
may choose an enumeration py, ps,... of the elements of W;\ W /Wi
refining the Bruhat order such that, after deleting repetitions, qu(p;),
qu(pe), .. is a listing of the elements of W, \W/W refining the Bruhat
order. Fix ¢ € W;\W/W; and p = p,, € qu'(q) and define

C(n) = {p17p27 cee ,pn}

By the hin-und-her lemma (4.1.2) it is enough to show that
Lom (M @gs RY) /T (M @ps RY)

is isomorphic to a direct sum of shifts of IRf .
The set F' = qu(C(m)) is downwardly closed and contains ¢ as a
maximal element. As M € TFZ there exists an exact sequence

TpygM — TpM — P- quJ

for some P € N[v,v™!]. Applying — ®ps R and using Proposition
4.1.6| we conclude an exact sequence

Lant(m\(ap) (M ®ps RY) = Pauor(iy(M @ps RY) — P 'Ry @ps R*
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As Tqu1m(op(M ®gs RY) is contained in both Loy (M @pgs RF)
and Lcgn_1)(M ®@ps R¥) by the third isomorphism theorem we will be
finished if we can show that

FC’(m) (IRQJ KRt RK)/FC(m_l)(IRg QpJ RK)

is isomorphic to a direct sum of shifts of IR; . But this is precisely the

statement of Corollary . Hence M - 795 e 1FE.

We now prove (2). The commutativity of the right hand diagram
is clear. As — - 79X is exact and every element in IF{ is an extension
of the nabla modules we only have to check the commutativity of the
left hand diagram for a nabla module. That is, we have to verify that

chv(IVq‘]) w; THE = chv(IVqJ - T9KY,
By Proposition the left hand side is equal to
IH; x; THE = Z pta+)—tp+) IH;{.
PEWNG/ W,y
For the right hand side note that:
ng(lvq‘] QR RK)/F<p(quJ Rprs RK) =
=T ('Ry @ps R")/T ('R @ps R™)[((qy)]
'Ry [20(p+) — €(q+)] (Corollary 3.3.6)

o o tp+)—tat) | Ivfof

12

Therefore, by definition of chy,
Chv(lvg . JﬁK) - Z pia+)—tP+) IH;(.

PEWNG/ Wy
This completes the proof in case J D K.

Case 2: Translating onto the wall (J C K): Denote (as usual) by
qu the quotient map

qu : W[\W/WJ — W]\W/WK

Let C € W/ \W/Wg be downwardly closed and choose ¢ € C' maximal.
Consider the exact sequence

Low-revggyM = Tqur )M = Tqu-r1 oy M/ T qu-1(cr oy M-

As M € ' FZ the right-hand module has a filtration with subquotients
isomorphic to direct sums of shifts ‘R; with p € qu™'(¢). In Proposition
in the next subsection we will see that any such module splits as
a direct sum of shifts of IRff upon restriction to RX. This implies
that Mgk € TFLE because, by Proposition 4.1.6] the restriction to
RI-Mod-R¥ of the above exact sequence is identical to

Lovigy(Mpx) = To(Mpx) = To(Mpx) /T ovigy (Mpx).
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We now turn our attention to (2). As above, it is enough to check
the commutativity of the left-hand diagram for a nabla module. Let
p € W \W/W; and ¢ = qu(p). We need to check that

- I,q,K)
he (IvY TEK _ o a-) e(p,)ﬂ( ) 45
ho(Vp)xs THE = w(T.p.)
where the first equality follows from Proposition [2.2.4l By definition
of chy this follows from the isomorphism

K = chg 'V - 0

IvgJ J oK ~ z(p,)—é(q,)ﬂ([aqu) IoJ
v/ . JK ~ S S e
v ’ w(LpJ)

which we prove in Lemma below. O
LEMMA 4.1.7. Let J C K, p € W, \W/W; and ¢ = WipWg. We

have an isomorphism

{(p-)—L(q-) (1,4, K)
m(1,p, J)

IvJ JgK ~
Vpﬁ_v

IvK
vE,

Proor. By Lemma [2.2.3| we have
("V) - 0% = (R pc [U(ps) + Lwic) — L(wy)]
(1, q, K)

=~ i) 'RI[U(p+) + U(wi) — L(wy)]
=0 7_[_([727’ J) Vq

where
a=lwrp,g) = Uwrgx) +Ups) — Ugs) + Lwk) — L(wy)
= (Up+) — €(wr) — Lwy) + Lwrp,r))—
(Ug+) — Uwr) — Lwi) + U(wrg,x))
= {(p-) — (q-)
by Corollary [[.2.11] O

4.2. Vanishing and splitting. This is a technical section in which
we prove two vanishing statements which were postponed in the last
section.

Let us begin with some generalities. Let A be a ring. An extension
between two A-modules

M—FE—N

gives an element of Ext! (N, M) by considering the long exact se-
quence associated to Hom(—, M) and looking at the image of idy; in
Ext'(N, M); the sequence splits if and only if this class is zero.

Now let A’ — A be a homomorphism of rings. If M and N are
A-modules one has maps

rm : Ext’y (N, M) — Ext"), (N, M).
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We will need the following facts:

(1) An extension between M and N splits upon restriction to A’
if and only its class lies in the kernel of the map

i Extly (N, M) — Extl, (N, M).

(2) A short exact sequence M’ — M — M" yields a commutative
diagram of long exact sequences:

(4.2.1) — Exth (M", N) — Ext}y(M, N) — Ext} (M’ , N) —
v v ¥
— Extl,(M", N) — Extl, (M, N) — Ext,,(M', N) —

(3) Similarly, if N/ < N — N” is a short exact sequence, we
obtain a commutative diagram of long exact sequences:

(4.2.2) — Ext!, (M, N') — Ext} (M, N) — Ext!y(M, N") —
v v v
— Extl, (M, N') = ExtY,(M, N) = Ext!,(M, N") —

These facts become transparent when reinterpreted in the derived cat-
egory (see e.g. [Wie]).

Given a vector space W, denote by O(W) its graded ring of regular
functions.

LEMMA 4.2.1. (Lemma 5.8 in [So6|) Let W be a finite dimensional
vector space and U,V C W two linear subspaces. Then

Extbr, (O(U), O(V))

s only non-trivial if VU sV or a hyperplane in V. In the later case
it 1s generated by the class of any short exact sequence of the form

OV)[-2] & OV ulU) - O(U)
with « € W* a linear form satisfying o|y = 0 and oy # 0.

We now turn to our situation, with the goal of analysing extensions
between standard modules. Notationally it proves more convenient
to work with left modules, which we may do using the equivalences
A;-Mod-A; =2 A} ® As-Mod as all our rings are assumed commutative.
We will do this for the rest of ths subsection without further comment.

Using the identification of R, with O(Gr,) and Lemma we
see that Extpgp(Ry, Ry) is non-zero only when Gr, and Gr,, intersect
in codimension 1. As

Gr, NGr, = Ve
and the representation of W on V is reflection faithful, this occurs only

when y = xt for some reflection ¢ € T. We conclude that there are no
extensions between R, and R, unless x # yt for some reflection ¢t € W.
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Now let p, p" € W, \W/W and suppose we have an extension of the
form

R E — IR/,
P P
we may extend scalars to obtain an exact sequence

R®p 'R) ®ps R~ E - R®p 'R} ®ps R.

If we again restrict to B! ® R’ we obtain a number of copies of our
original extension. By Theorem [2.4.1| we have an isomorphism

R®@pi 'R} @ps R = R(p).
Therefore our extension takes the form
R(p) = E — R(p').

LEMMA 4.2.2. Suppose that p,p’ € Wi \W /W are not comparable
i the Bruhat order. Then

EXt}%]®RJ (IRPJ, IRI{,) = 0

PRrooOF. By the above discussion it is enough to show that there are
no extensions between R(p) and R(p’). As p and p’ are incomparable,
there are no pairs x € p and 2’ € p’ with 2’ = xt for some t € T. Thus
(again by the above discussion), Extpo p( Ry, Ry) for all x € p, 2’ € p.
By Corollary [3.3.5] R(p) (resp. R(p')) has a filtration with successive
subquotients R, for z € p (resp. x € p/). By induction and the long
exact sequence of Ext it follows first that Extpgs(R(p), Rw) = 0 for
all 2/ € p/, and then that Extpgz(R(p), R(p')) = 0. O

Our goal for the rest of this section is to prove Proposition [4.2.5
below. We start with two preparatory lemmas.

LEMMA 4.2.3. If v € W and t € T then the map
1 Extig p(Rey Rut) — Extpg pe( Ry, Rar)
induced by the inclusion R® R' — R ® R is zero.
PRrROOF. Given c € R® R of degree 2, vanishing on Gr, but not on
Gr,, we obtain an extension
(4.2.3) Rat[—2] <> Ryt — Ra.

By Lemma , it is enough to show that @ splits upon restriction
to R® R'. Consider the map R, .+ — R.:[—2] sending f to the image
of f0;, where 9, is the (right) Demazure operator introduced in Section
3.3l This is a morphism of R ® R'-modules. As ¢ vanishes on Gr,
but not on Gr,,, cd; is non-zero, hence is a non-zero scalar for degree
reasons. Thus a suitable scalar multiple of this map provides a splitting

of (4.2.3) over R® R'. O
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LEMMA 4.24. Let I,J C K be finitary subsets of S and p,p’ €
Wi\W/W; be such that p # p" but WipWx = Wip'Wg. Then every
extension between IR; and [RI{, splits upon restriction restriction to
R'® RX.

ProoOF. Note that by the above discussion it is enough to show
that every extension between R(p) and R(p’) splits upon restriction to
R! @ RX. First note that if x € p’ and y € p with z = yt for some
reflection ¢ € W, then either ¢t € Wy or x = t'y for some t' € W; by
Proposition [1.2.12] The second possibility is impossible however, as
p # p'. We conclude, using the previous lemma, that if z € p’ and
y € p then either Extrgr(R,, Ry) = 0 or the map Extrgr(R., R,) —
Extprgrr (Ry, Ry) is zero.

We now proceed similarly to as in the proof of Lemma [£.2.2] In-
ducting over a filtration on R(p) and using we conclude that
the map

Exthon(Re, R(p)) = Exthyq e (Ra, R(p))
induced by the inclusion R ® R¥ — R ® R is zero for all z € p’. In-
ducting again using we see that the map Extpg p(R(p'), R(p)) —
Extprgpe (R(p'), R(p)) is zero, which establishes the lemma. O

PROPOSITION 4.2.5. Let I,J C K be finitary subsets of S and let
q € WA\W/Wyg. Let B € 'FL and suppose that supp B C 'Grl, for
some C C Wi\ q/W;. Then the restriction Brx € R!-Mod-R¥ is
tsomorphic to a direct sum of shifts of standard modules [Rf.

PROOF. Choose p € C' maximal in the Bruhat order. As B € TFJ
we have an exact sequence

(4.2.4) TevgyB— B~ P-'R]

for some P € Nv,07']. As T\ B € 'FL we may induct over a
suitable filtration of I'c\(p B and conclude, with the help of Lemma
, that splits upon restriction to R @ R¥.

Now let us choose a listing py, pa, . .. p, of the elements of C' refining
the Bruhat order and let C'(m) = {p1,p2,...,pm} denote the first m
elements as usual. Using downward induction and the above argument
it follows that, in R/-Mod-R¥, we have an isomorphism

Brx = P (T B/Tcm-1B)rx.

The proposition then follows as ('RJ)zx is isomorphic to a direct sum
of shifts of ‘RY where ¢ = pWy by Corollary [2.2.3| O

4.3. Delta flags and duality. In this section we define a category
of objects with delta flags, 7 F{, which is “dual” to /FJ. Just as in the
case of objects with nabla flags the translation functors preserve {FJ
and their effect on a “delta character”

chp : I.’Fi — I/
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can be described in terms of the Hecke category.

Of course it would be possible to repeat the same arguments as
those used for objects with nabla flags. However, one may define a
duality

D:'Fg S TR
commuting with the translation functors. This allows us to use what
we already know about objects with nabla flags to follow similar state-
ments for objects with delta flags.

For the rest of this section fix a pair I,.J C S of finitary subsets.
Recall that we call a subset U C W, \W/W; upwardly closed if

U={pe W \W/W;|p>q for some q € C}.

DEFINITION 4.3.1. The category of objects with A-flags, denoted
LFL is the full subcategory of R’ whose objects are modules M € 'R’
such that, for all upwardly closed subsets U C W \W/W; and minimal
elements p € U, the subquotient

Ly M /T gy M
s isomorphic to a direct sum of shifts of IRpJ.

Just as for objects with nabla flags there is a “hin-und-her” lemma,
whose proof is similar to that for objects with nabla flags (and works

because the support of M € {R” is always contained in ! GI'(J;« for some
finite subset C' C W \W/W;).

LEMMA 4.3.2 (“Hin-und-her lemma for delta flags”). Let py,pa, ...
be an enumeration of the elements of Wi \W /W refining the Bruhat
order and let C(m) = {pms1, Pmyas--- +. Then M € 'R7 is in 'FL if
and only if, for all m, the subquotient

is isomorphic to a direct sum of shifts of 'Ry .
Moreover, if M € "R’ and p = p,, then the natural map

LopM/Tsp M = Ty M /Ty M
s an isomorphism.
For each p € W;\W/W; we renormalise IR]{ and define
INJ _ IpJ
Ap - Rp [—f(p_)]

If id € p we sometimes omit p and write ‘A7 for TAJ. If M e TF}
then we may find polynomials h,(M) € Nlv,v™!] such that, for all
p € Wi \W/Wj, we have an isomorphism

F210]\/[/F>p]w = hp(M) ) IA;-
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We define the delta character to be the map
cha : TFL — "H’
M — Z ptP-)— (p+)hp(M) IHI;]'
pEW\W/W,

The analogue of Theorem [4.1.5]in this context is the following:

THEOREM 4.3.3. Let K C S with either J C K or J D K.
(1) If M € 'F{ then B-79% e I FK.
(2) The following diagrams commute:

' TFK 1
iChA lChA lChA J/ChA
1947 wy HE 1K Py — 1947

We define a duality functor
D : R"Mod-R’ — R'-Mod-R’
M +— Homp: (M, R [20(w;)])

where we make DM into a bimodule using the bimodule structure on
M. That is, if f € DM, then

(rifra)(m) = f(rimrs) for all m € M.

We do not include reference to I and J in the notation for D, and hope
this will not lead to confusion. The following proposition shows that
the translation functors commute with duality.

PRrROPOSITION 4.3.4. Let K C S be finitary with either J C K or
J DK, and let M € R'-Mod-R’. In R'-Mod-R¥ one has

D(M -79%) = (DM) - 79%.

PROOF. If J C K then the isomorphism D(M - 79X) = (DM) -
J9K is a tautology. So assume that J O K. We will use standard
isomorphisms discussed in Section [1| and switch between left and right

modules as appropriate (note that we have already done this once in
the definition of D). In R’-Mod-R¥X we have

D(M - 79%) = Hompr (M ®ps RX, R'[20(wg)))

(
>~ Homps (R™, Hompr (M, RI[%(wK)]) (11.0.8))
>~ Hompr (M, R'[20(wk)]) ® gs Homps (RY, R7) (1.0.9)
=~ Hompr (M, R'[20(wy)]) @ ps RE (3.2.3)

= (DM) - 9% O

Theorem [4.3.3| now follows from Theorem and the following
proposition, which also explains the name “duality”.



66 3. SINGULAR SOERGEL BIMODULES

PROPOSITION 4.3.5. The restriction of D to ' FZ defines an equiv-
alence of TFL with TF{™ and we have a commutative diagram:

D opp
1 15y
Chx A A
I H J

Before we begin the proof we state a lemma, describing the effect
of D on a nabla module.

LEMMA 4.3.6. If p € W \W/W; we have
D('V;) = 1A [(py) — £(p-)]-
PrOOF. Let K = I Np_Jp~'. In R¥-Mod we have isomorphisms
Homps (RX, RI[20(w,)]) = R2(¢(w;) + ((w,) — ((wy))]  (Cor. BZ3)
>~ RE[2(6(ps) — £(p-))] (Cor. L2TI).

As a left module, IRP{ is equal to R where R’ acts via the inclusion
R! — RX. Hence

D('Ry) = 'Ry [2(£(py) — £(p-))]
and we have
D(*V)) = D('R][t(p;)]) = "R)[6(p+) — 20(p-)] = ' AJ[0(ps) — (p_)]
as claimed. 0

PROOF OF PROPOSITION [L.3.5] Let M € IFL. We have to show
that DM € 'F{, and that chy(M) = cha(DM). Choose an enu-
meration py, po, ... of the elements of W;\W/W) refining the Bruhat
order and let C(m) = {p1,...,pm} and C(m) = {Ppmi1, Pms2, - }. As
M € ! FI we can find polynomials g,, € N[v,v™!] such that, for all m,
we have an exact sequence

Com-nM = Tom) = gm 'V, -
Consider the “cofiltration”:
(4.3.1) = M[TognyM — M[TeM — -
By the third isomorphism theorem we have an exact sequence
gm - 'V = M/Tm-1yM — M /Ty M.

We know that 'V is graded free as an R'-module for all p. We con-
clude, using induction and the above exact sequence that the same is

true of every module in (4.3.1)). In particular, D is exact when applied
to (4.3.1) and we obtain a filtration of DM

(4.3.2) co+ = D(M/T(n_1yM) = D(M/T¢imyM) < - --
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with successive subquotients isomorphic to
(4.3.3) D(gm - 'V ) 2 G - D'V ) 2 0=t TAT

(for the second isomorphism we use Lemma above). It follows
that the filtration (4.3.2) is identical to

Thus, by the “hin-und-her” lemma we conclude that M € IF{. Using
(4.3.3) and the “hin-und-her” lemma again we see that

chg (M) =Y " gm 'H; = cha(DM).
Jopp

Lastly, the restriction of D to FJ gives an equivalence with 7 F{
because the objects in both categories are free as left R-modules. [

5. Singular Soergel bimodules and their classification

In this section we complete the categorication of the Hecke category
in terms of Soergel bimodules. After the preliminary work completed in
the previous sections, the only remaining difficulty is the classification
of the indecomposable objects in /B7. The key to the classification
is provided by Theorem which explicitly describes the graded
dimension of Hom (M, N) for certain combinations of Soergel bimodules
and modules with nabla and delta flags.

In Section[5.1] we define the categories of singular Soergel bimodules,
as well as a certain smaller category of bimodules (the “Bott-Samelson
bimodules”), for which a description of homomorphisms is straight-
forward (Theorem [5.2.2). In order to extend this description to all
special bimodules we need to consider various localisations of Soergel
bimodules, which occupies Section [5.3] In Section [5.4] we then prove
the Theorem and the classification follows easily. In the last sec-
tion we investigate the characters of indecomposable Soergel bimodules
more closely, recall Soergel’s conjecture and show that it implies a for-
mula the characters of all indecomposable special bimodules in /B” in
terms of Kazhdan-Lusztig polynomials.

5.1. Singular Bott-Samelson and Soergel bimodules. We fi-
nally come to the definition of Soergel bimodules.

DEFINITION 5.1.1. We define the categories of Bott-Samelson bi-
modules, denoted 'Blg, to be the smallest collection of full additive
subcategories of RI-Mod-R” for all finitary subsets I,.J C S satisfying:

(1) 1BL contains 'R! for all finitary subsets I C S;

(2) If B € "B} then so is Blv| for all v € Z;

(3) If B € 1BLs and K C S is finitary, satisfying J C K or
J D K, then B-795 € 1BE,;

(4) If B € 1B},¢ then all objects isomorphic to B are in 'Bjg.
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We define the categories of singular Soergel bimodules, denoted B,
to be the smallest collection of additive subcategories of R'-Mod-R’ for
all finitary 1,J C S satisfying:

(1) 1B7 contains all objects of 1BLs;

(2) 1B7 is closed under taking direct summands.
We write Byg and B instead of °BY%¢ and °B°.

The definition of the category of singular Soergel bimodules is more
technical than that used in the introduction. However, from condition
3) it is clear that B%g contains all tensor products

RN Qpa R Rtz = Qpin_1 Rl

where =1, C J; D I, C -+ C J,.1 D I, = J are all finitary
subsets of S. It follows that the definition of 7B’ given above and in
the introduction are the same.

By Theorems [£.1.5|and [£.3.3]it follows by induction that any object
M € B} lies in 'FL and TF{. As the categories FZ and 'F{ are
closed under taking direct summands, the same is true of /B”7.

5.2. Homomorphisms between Bott-Samelson bimodules.
In this section we use the fact that translation onto and out of the wall
are adjoint (up to a shift) to establish a formula for all homomorphisms
between Bott-Samelson bimodules.

We start by proving the adjunction.

LEMMA 5.2.1. Let I,J, K C S be finitary with either J C K or
J D K. Let M € R'-Mod-R? and N € R'-Mod-R¥. We have an
isomorphism in RI-Mod:

Hom (M - 0% M) = Hom(M, N - K97 [0(wg) — £(wy)].
PRrROOF. If J D K we have isomorphisms of R/-modules:
Hom i prc (M - 795 N) = Hompr_ ps (M, Hompx (R, N))  (1.0.6)
= Hompr_rs (M, Ngs)
>~ Hompr_gs (M, N - 790%)[0(wg) — O(wy)]

If J C K then, setting v = ¢(wg) — ¢(w,;) we have isomorphisms of
R'-modules:

HOII'IRI,RK(M . J19K7 N) =
=~ Hompr_px (M @ps R?, N)[—V]
>~ Hompr_ s (M, Hompgx (R?, N))[~v] (11.0.6))

r(
>~ Hompr_zs (M, N ® Hompgx (R’ [V], RY)) (1.0.7)
=~ Hompr_ps (M, N Qpx RJ)[I/] (Cor. B.2.3))
(

>~ Hompr_zs (M, N - K97)[0(wg) — O(wy)] O
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We can now establish the first version of the homomorphism for-
mula.

THEOREM 5.2.2. If M € 'B}s, N € IFL or M € IF{, N €
IB ¢ then Hom(M, N) is graded free as an R'-module and we have an
1somorphism

Hom(M, N)[—¢(wy)] = (cha(M),chy(N)) - R
of graded R'-modules.

PROOF. Let us first assume that M € 'B}s and N € TFJ. Using
Lemma we see that, as Rf-modules

Hom(M - /9%, N)[—l(wk)] = Hom(M, N - K97)[—L(w;)].
By and Theorems [4.1.5] and [4.3.3] we have
(cha(M-79%), chy(N)) = (cha(M) *; "H®, chy(N)) =
= (cha(M), chy(N) xx “H”) = (cha(M), chy (N - ©97))

We conclude that the formula is true for (M - 795X N) if and only if
it is true for (M, N - £97). Tt is also clear that it is true for (M, N) if
and only it if it true for any shift of M or N. Thus, without loss of
generality, we may assume that M = RT = IAI

By Lemma [2.2.10| we know

(cha(TAT), chy(N)) = (0= @D T chg(N)) = coefficient of 'H' in chy N.

Thus, by definition of chy, we have

Ty, N = (cha(TAT), chy(N)) - Iyl
It follows that
Hom('AY, N)[—£(w;)] = Tw, (N)[—£(w;)] = (cha(IAT), chy(N)) - 'R!

which settles the case when M € 1By and N € I FL.
If M € 'F{ and N € B} then identical arguments to those above
allow us to assume that N = V', We have

TWiM = (cha M, 'H') - AT
and hence
Hom(M, 'V!)[—(w;)] = Hom(M, 'R")
= Hom(I'"* M, 'R")
(cha M, THT) - Hom('R','R")
> (cha M, chy (V1)) - R! O

12
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5.3. Some local results. We would like to generalise the ho-
momophism formula of the previous section to all objects in B7.
The crucial point is determining Hom(M, V) and Hom('AZJ, N) for
M,N € 'B’. For this we consider various localisations of special bi-
modules, which is the purpose of this section.

Given any reflection t € W let R® denote the local ring of V! C V.
In other words, in R®) we invert all functions f € R which do not
vanish identically on V*.

The ring R® is no longer graded and we will denote by R®-mod-R
the category of (R®), R)-bimodules. The lack of a grading on R® means
that we do not know if objects in R®-mod-R satisfy Krull-Schmidt,
which explains some strange wording below.

If M,N € R-Mod-R are free as left R-modules, with M finitely
generated we have an isomorphism

Hompeo p(RY @ M, RY @5 N) =2 RY @ Homp_p(M, N).
It follows that, with the same assumptions on M and NN,
Extlo o(R® @ M, RY @5 N) = RO @5 Exth_ (M, N).

Lemma m tells us that that Exty, (R, R,) is non-zero if and only
if y = ra for some reflection » € T, in which case it is supported on
Gr, NGr,,. We conclude that

(5.3.1) Exthe p(RY @r Ry, RY @ R,) = 0 unless y = ta.

(Alternatively, one may explicitly split the extension of scalars of the
generator of Ext!(R,, R,,) to R®-mod-R using a Demazure operator,
if r#t.)

Suppose that M € R-Mod-R has a filtration with successive sub-
quotients isomorphic to a direct sum of shifts of R,, and that no (shift
of) R, occurs in two different subquotients. By inducting over the
filtration of M and using , we see that R® ®pz M has a decom-
position in which each summand is either isomorphic to R @5 R, or
is an extension between R ®p R, and RY @5 R..

The next two results makes this decomposition more precise for
special classes of modules.

LEMMA 5.3.1. Let I,J C S be finitary and p € Wi \W/W; be a
double coset. In R -mod-R we have an isomorphism

6933617 R" ®r Re if tp 7£ p
®x6p2x<tx R(t) ®r Rx,tz Zf tp = b
ProOF. Note that, by Proposition [1.2.12, either tp = p or tpNp =

(). The lemma then follows by applying R®Y) ® — to the exact sequence
in Proposition [2.3.4] Il

RY ®p R(p) = {
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PROPOSITION 5.3.2. If B € 'B’ then RY®@pr B gs R € RY-mod-R
1s isomorphic to a direct summand in a direct sum of modules of the
form RY @p R, and RY @p R, with x < tx.

PRrOOF. IF the statement is true for B, then it is true for any direct
summand of B, and hence we may assume that B € 'B. If B =R!
then R ®pr 'R @pr R = R(W;) (Theorem and the necessary
decomposition is provided by Lemmal5.3.1] By the inductive definition
of 1B%s it is enough to show that, if the lemma is true for B € 187,
then it is also true for B - /9% € IBX with J € K or J D K. The case
J D K is trivial, and so we are left with the case J C K.

The module B&rx R is a direct summand in B&ps R®px R and, by
assumption, RY @ B®gs R is a direct summand in a direct sum of the
modules RY ®p R, and R @ R, s, with x < tz. Hence it is enough
to show that the statement of the lemma is true for R @ R, @px R
and RY ®@p R,y @px R.

In the first case R, ®zpx R = R(zWk) (Theorem again) and
the decomposition follows again from Lemma together with the
fact that tx > x.

In the second case there are two possibilities. If tx = xt’ for a
reflection ¢ € Wy then R, splits upon restriction to R¥ (Lemma
and we may apply Lemma again.

If tx # at’ for any reflection ¢’ € Wi then the sets xWy and taWi
are disjoint. By applying — ®px R to the exact sequence R,[—2] —
R, ix — Ry, and using the identification R, ®rx R = R(Wk) we see
that R, ., ®px R has a filtration with subquotients (a shift of) R,, with
w € xWi or txWy. It follows that we have an isomorphism

R(t) ®R R$7tx ®RK R = @ Eacy,tacy
yeEWK

where E,, 1., is a (possibly trivial) extension of R) @z R,, and R ®p
Riyy.

To identify E,, 1, we tensor the surjection R(Wg) — R, with the
exact sequence R;[—2] — R, — Ry, to obtain a diagram

Rx ®RK R[—Q]Cﬁ Rz,tm ®RK R— th ®RK R

| | |

Ryy[—2|]~—R Ryzy.

HATRAAT]

After tensoring with R the left and right surjections split by Lemma
5.3.1} It follows that Ey, ., is isomorphic to R® ®g R,y for all
y € Wk and the lemma follows. O

We now come to the goal of this section, which is to relate Hom('A7, B)
and Hom(B, V) for a singular Soergel bimodule B € 'B” to the nabla
and delta filtrations on B. This provides the essential (and trickiest)
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step in generalising the homomorphism formula for Bott-Samelson bi-
modules to all Soergel bimodules.

The arguments used to establish this relation are complicated and
so we first sketch the basic idea. Let us consider a nabla filtration on
a Bott-Samelson bimodule B. By Theorem [5.2.2] we know the rank
of Hom(! A; ,B) in terms of FEB and a simple calculation confirms

that Hom(’AJ, B) and I's B[—{(p_)] have the same graded rank as left

RI-modules.

Given a morphism « : 'AJ — B one may consider the image of a
non-zero element of lowest degree in FEB and one obtains in this way
an injection

Hom(IAI{, B) — FEB[K(p_)].

One might hope that this maps into a submodule isomorphic to FEB [—C(p-)],
which would explain the above equality of ranks.

In order to show that this is the case we choose a decomposition

r>B=p.'Rr)
and recall that IRpJ has the structure of a graded algebra compatible
with the bimodule structure. In particular, elements in IRpJ define
endomorphisms of FEB (which in general do not come from acting by
an element in R’ ® R’). Given an element m € 'RJ, we will abuse
notation and denote by mI’ EB the image of this endomorphism.

We define an element m,, € IRZ of degree 2¢(p_) and argue (using
localisation) that the above injection lands in

my L5 B(p-)) = T5 B[—((p-)].
Thus the two modules I's B[—{(p_)] and Hom(’ A7, B) are isomorphic.

REMARK 5.3.3. If W is a finite one may make the arguments in
this section simpler by considering certain elements (similar to our
¢ € R(p)) constructed using Demazure operators. This is discussed in
[So6|, Bemerkung 6.7.

We begin by defining the special elements m,, € ‘RJ. Recall that,
by definition, the modules IR; are the invariants in R under Wy, where
K=Inp_Jp_L.

LEMMA 5.3.4. The element
my = H ht € R.

teT
tp_<p_

lies in 'R .
PROOF. Because zhy = hyg,—1 if © € W (2.1.2)) it is enough to show

that if s € I Np_Jp~' and t € T with tp_ < p_, then (sts)p_ < p_.
Choose 1 € J such that sp_ = p_r. We have cither (sts)sp_ = stp_ <
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sp_ or stp_ > sp_. However the latter is impossible as tp_ ¢ p.
Similarly, either stp_r < sp_r = p_ or stp_r > sp_r and the latter is
again impossible. It follows that (sts)p_ < p_ as claimed. O

We now come to the main goal of this section.

THEOREM 5.3.5. Let I,J C S be finitary, B € 1B’ and p € Wr\
W/W;. We have isomorphisms

(1) Hom('R/, B) = Hom('R;,I'> B)[—2((p_)],

PP
(2) Hom(B,'R]) = Hom(T'; B, 'R )[—2((p_)].

The proof depends on a lemma which we establish by considering
various localisations of B. Given a subset A C W we extend the
notion to sections supported in Gr, to modules M & R®-mod-R as
follows. Writing I4 for the ideal of functions vanishing on Gr,, we
define I'4M to be the submodule of elements annihilated by (I4), the
ideal generated by I4 in R®) ® R.

LEMMA 5.3.6. For any pair of morphisms
M — B — 'R/
with M € 'FJ such that Ts,M = M, the composition lands in mpIRp{.
PROOF. As in Lemma [2.4.2] let us regard ‘R’ as the subalgebra
of W; x W-invariants in R(p). Using Theorem [2.4.1] we obtain, for

all t € T, a commutative diagram (where the vertical inclusions are
inclusions of abelian groups):

m e M B IR;
N N N

R®RI M®RJ RHR(X)RI B®RJ RHR([)) > (f:c)
N N N

RY ®@pt M ®ps R—~ RY @pr B ®ps R—~ RY @x R(p)

Denote by f = (f.) the image of m € M in R(p) as shown. By
W x W -invariance, it is enough to show that f, is divisible by m,,.

To this end, let ¢ € T satisfy tp_ < p_. Considering elements
supported on Gr, and Gr,, and using Lemma and Proposition
we see that the bottom row admits a morphism to a composition
of the form

R(t) Rnr Rp7 N @ R(t) ®r Rtp,,p, N R(t) Qr Rp,'

The composition of any two such maps must land in h,R® ®p R, . It
follows that
foo€ RO () WRY ®rR=m,R

teT
tp_<p_

and the lemma follows. O
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Proor orF THEOREM [5.3.5l First note that if the theorem is true
for a module B, then it is true to any direct summand of B. Thus we

may assume without loss of generality that B € 1Bys.
We begin with 1). Let o : 'R} — B be a morphism. As supp 'R;) =

I Grg the image of « is contained in I'c,B and, by composing with the
quotient map we obtain a map IR;{ — I’;B . This yields a morphism

® : Hom('R), B) — Hom('R/,T’5 B).

p’TDp

As B has a nabla flag, any element of B has support consisting of a
union of ! Grg for ¢ € W, \W/W; by Lemma . It follows that ® is
injective.

Let us now fix an isomorphism

<pa~ p.Ipt

rsB=~p.'R/.
By Lemma above, given any a € Hom('R;, B) the image of ®(«)
is contained in P-m,'R] = T’ B[—2((p_)]. Thus we obtain an injection

(5.3.2) Hom('R/, B) — Hom('RJ,I'> B)[—2((p-)].

PP
We compare ranks in order to show that this is an isomorphism.
Let us write g € N[v,v™'] for the coefficient of 'H; in chy(N)
written in the standard basis. By Theorem [5.2.2 we have, as left RI-
modules,

Hom('R, B)[(p-) — £(wy)] = Hom(' A7, B)[~€(w,)]
> (plp-)—Ltp+) IHg,chv(B» - RI

One the other hand,
Hom('R!,TZB)[~((p_) — f(w,)] =

p’T P

=gV [—l(p-) — L(w,)] (Cor.
=g IRZ[E(ZM) —U(p-) — L(wy)]

=g "R[l(wr) — €(wr )] (L.2.1)
_ ) - R! or
s R (Cor. B-1.9)
_™0) 23)

Thus (5.3.2) is an isomorphism and 1) follows.
We now turn to 2) which, of course, is similar. Let a : B — 'R
be a morphism. For support reasons, « annihilates I's,B and hence
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factorises to yield a map I'’B — 'RJ. We obtain in this way an
injection
® : Hom(B, 'R}) — Hom(T'; B,'RY).
Let us fix an isomorphism
> ~ InJ
[>B=P- 'Ry

for some P € N[v,v™']. By the above lemma if o € Hom(B,'R) then
the image of ®(«) is contained in P - mpIR; and thus we obtain an
injection

Hom(B,'R]) — Hom(I'; B,'R))[—2((p-)].
Again we compare ranks. Choose h € N[v,v™'] such that I'; B =
h-'AJ. By Theorem we have isomorphisms of left R/-modules:

Hom(B, IR;)[K(er) —l(wy)] = Hom(B, IVPJ)[—K(UJJ)]
o _@ . RI
o h?T(J) R
On the other hand
Hom(TZ B,/RY)[~26(p-) + (py) — £(w,)] =
=~ Hom(h IAJ IRJ)[ U(p-) +L(py) — L(wy)]
~h. IR;[E( ) —Lp-) — l(wy)] (Cor. [2.4.4])
o —@ - RI
o hw(]) R

which completes the proof of 2). O

5.4. The general homomorphism formula and classifica-
tion. We can now prove the natural generalisation of Theorem [5.2.2]
to all Soergel bimodules. For the duration of this section fix I, J C S
finitary.

THEOREM 5.4.1. If M € 1B/, N € IFL or M € I'F{, N € B/
then Hom(M, N) is graded free as an R!-module and we have an iso-
morphism

Hom(M, N)[—{(w;)] 2 (cha(M), chy(N)) - R
of graded R'-modules.

PROOF. We handle first the case M € F{ and N € B/. We
will prove the theorem via induction on the length of a delta flag of
M. The base case where M = 'AYJ for some p € W\ W/W, follows
by essentially the same calculations as those in the proof of Theorem
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5.3.5. Namely, if we write g for the coefficient of 'H; in chy(N), we
have

Hom('AJ, N) = T>N[—((p-)]

g-'R[l(py) — L(p-)]  (Theorem
_md)

=(I,p,J)

_7T<) I
Toiy B lw)

= (cha(TA]), chy(N)) - R [0(w,].

For the general case we may choose p € W\ W/W; minimal with
'’ M # 0 and obtain an exact sequence

(5.4.1) IypyM — M — I'PM.
By the minimality of p, both I',M and I'*M are in ' F{ and
ChA M = ChA(F7gpM) + ChA(FpM).

1

12

QI

- R'[t(w)]

2

As N € 'B” there exists some N € B}, in which N occurs as a direct
summand The homomorphism formula for Bott- Samelson modules

2)) tells us that Hom(—, V) is exact when applied to . Hence
the same is true for Hom(—, N) and we conclude by mductlon that we
have isomorphisms of graded RI-modules:

Hom(M, N) = Hom(I' .,,M, N) & Hom(I'’M, N)
> (cha(M),chy(N) - R [0(w,)].
The case when M € 'B7 and N € ' F{ is handled similarly. If N is
isomorphic to 'V for some p € W;\W/W,, then similar calculations

to those in Theorem [5.3.5| verify the theorem in this case. For general
N we choose p minimal with I', N # 0 and obtain an exact sequence

I,N < N —» N/T,N.

Applying Hom(M, —) this stays exact for the same reasons as above,
and the isomophism in the theorem follows by induction. U

We now come to the classification.

THEOREM 5.4.2. For every p € W, \W /W there is, up to isomor-
phism, a unique indecomposable module IB; € B’ satisfying
(1) supp'B) c 1Gr,;
IRJy ~ InoJ
(2) TP(°By) = 'V,.
The bimodule IB};] is self-dual and any indecomposable object in 1B’ is
isomorphic to 'B][v] for some p e W \W/W; and v € Z

In keeping with our notational convention, if I = J = () we will
write B,, instead of ‘B;.
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PRrOOF. Choose p € W \W/W; and let (I, p;, J;)o<i<n be a right
reduced translation sequence with end-point (I, p, J) (see Section [L.3)).
Consider the module

E — IVI . J019J1 . J119J2 o JnflﬁJn c IBJ.
By Theorem {4.1.5 and Proposition [2.2.7] we have

chy B = MH" s H s, o oon o H = TH 4N N HY

q<p

Hence B satisfies conditions 1) and 2) in the theorem. Let IB]‘J] te the

unique indecomposable summand of B with non-zero support on ! Gr; .
Clearly 'B; also satisfies conditions 1) and 2).

Note that B is self-dual (because 7V is and the translation functors
commute with duality by Proposition 4.3.4). As ‘B is the only direct

summand of B with support containing Gr; , it follows that IB;D] is also
self-dual.

Let M and N be objects in /B’ and assume that p is maximal for
both modules with I'’M # 0 and I'’N # 0. Using Theorem [5.4.1] we
see that Hom(M, —) is exact when applied to the sequence

I'ypN — N — I'PN.
In other words we have a surjection
Hom(M, N) — Hom(M,TP?N) = Hom(I'"M,TPN).
By symmetry, we also have a surjection
Hom(N, M) — Hom(I'" N, I’ M).

These surjections tell us that we can lift homomorphisms between ['P M
and I'’ N to M and N.

Now assume that M and N are indecomposable. After shifting M
and N if necessary we may find o : I'’M — I'’N and g : PN — [PM
of degree zero, such that Jo« is the identity on a fixed direct summand
I V; in '’ M and zero elsewhere. By the above arguments we may find

lifts & : M — N andﬁ : N — M of a and  of degree zero. As M is
indecomposable and b o & is not nilpotent it must be an isomorphism.
Thus I'?M = 'V and M is isomorphic to a direct summand of N.
However N is indecomposable by assumption and thus M and N are
isomorphic.

We conclude that, for any fixed p € W, \W/W, there is at most one
isomorphism class (up to shifts) of indecomposable bimodules B € 1B’
such that p is maximal with I'’B # 0. The theorem then follows as we
already know that IBI‘D] satisfies these conditions. U

The classification allows us to prove that indecomposable Soergel
bimodules stay indecomposable when translated out of the wall:
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PROPOSITION 5.4.3. Let K C I and L C J be finitary subsets of S
and

qu . WK\W/WL — W]\W/WJ

be the quotient map. Choose p € W \W /W, and let q be the unique
mazimal element in qu'(p).

(1) In R¥-Mod-R* we have an isomorphism
R¥ @pi 'B] @ps R* = ¥BY.
(2) In R'-Mod-R’ we have an isomorphism
m(1)m(J)
T(K)w(L)
PROOF. For the course of the proof let use define
() (J)
T(K)w(L)

RI (KB(f)RJ %J IBZ;]

P =

The composition of inducing to R¥-Mod-R" and restricting to R'-Mod-R’
always produces a factor of P. To get started, note that I'('B;) = 'V
and hence (using Proposition [4.1.6)

Tau=t (o) (RS ©pr 'By ®po RY) /T (<o) (R @p1 "By @po RY) =
~ RN @pi 'V @ps R

The latter is isomorphic to a shift of R(p)"V&x*Wr by Theorem and

hence is indecomposable. By the classification, we may write
(5.4.2) R¥ @pr 'B] @ps R* = "Bl & M

for some M € KB whose support is contained in KGrgu_l({q}). It
follows that

Fqufl({ép})(KBqL)/Fqufl({@})(KBqL) = R @p IV; ©ps R
This tells us (again by Proposition that
T ep(rt ("B po) /T (i (BBE) o) = pi(RY @pi 'V @ps R") g
~p. v/

Therefore we may write
wi("Bf)ps = P-'B] & N

for some N € B’. Restricting to RI-Mod-R’ yields

P-'B) = pi("Bl)gs & prMps = P-'B] & prMps & N
whence M = N = 0. Both claims then follow. U
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5.5. Characters and Soergel’s conjecture. In this section we
turn our attention to the characters of Soergel bimodules. We will
see in the following theorem that the nabla character of a singular
Soergel bimodule is determined by its delta character (and vice versa).
Therefore we simplify notation and define

ch(B) = cha(B)
for all Soergel bimodules B.

THEOREM 5.5.1. Let I,J and K be finitary subsets of S.
(1) For all B € "B’ we have chy(B) = cha(B).

(2) We have a commutative diagram

IBJ « JBK ~ORI T IBK .
ichxch lch
1) JHK 7 I K
(8) The set {ch('B]) | p € W \W/W;} builds a self-dual basis for

H.
PROOF. We begin with 1). As chy(‘R!) = cha({R!) we may use

Theorems 4. 1.5l and [4.3.3] to conclude that the statement is true for all
Bott-Samelson bimodules. We now use induction over the Bruhat order

on WA\W/W; to show that chy (‘B;) = cha('B)) for all p € WA\W/W),
which implies the claim. If p contains the identity, then IBZ{ is Bott-

Samelson and so the claim is true. For general p € W \W/W; we may
(as in the proof of Theorem 5.4.2)) find a Bott-Samelson module N such

that N = ‘B @ N and the support of N is contained in ! Grip. We
have

chy ('B)) + chy(N) = chy(N) = cha(N) = cha('B]) + cha(N).

By induction chy(N) = cha (V) and the claim follows.

Statement 2) follows by a very similar argument. It is clear from
Theorem [£.3.3] that the statement is true for Bott-Samelson bimodules.
Let us fix M € 'B7. It is enough to show that ch(M ®ps 'BY) =
ch(M) +; ch(’BX) for all p € W, \W/Wg. Again we induct over the
Bruhat order on W, \W/W. If p is minimal then /B is Bott-Samelson
and the claim follows by Theorem [1.3.3] If p € W,\W/W is arbitrary
then we may find, as above, a Bott-Samelson bimodule N € 7Bk
which decomposes as N = /BF & N with the support of N contained
in /Gr’ . We have

ch(M®s'BE) + ch(M ®ps N) = ch(M @ps N) =
= ch(M) % ch(N) = ch(M) *; ch('BX) + ch(M) #; ch(N).
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By induction ch(M ®ps N) = ch(M) ,; ch(N) and the claim follows.
We now turn to 3). By Theorem [5.4.2) we have

ch('B)) = "H] +Y ), 'H]
q<p
for some A, € N[v,v™']. It follows that the set {ch(’B;)} gives a basis

for "H7. The self-duality of ch('B;)) follows from the self-duality of ‘B;/
and Proposition 4.3.5;

ch('B)) = cha(D'B)) = chy('B]) = ch('BY). O

Given the theorem it is desirable to understand this basis {ch('B;)}

for p € Wi\ W/W; more explicitly. We will finish this chapter by

recalling Soergel’s conjecture on the characters of the indecomposable
bimodules in B (recall that we write B instead of °%).

In [So6] Soergel considers the full subcategory of R-Mod-R con-

sisting of all objects isomorphic to direct sums, summands and shifts
of objects of the form

(5.5.1) RQps RQpt -+ Qpu R

where s,t,...,u € S are simple reflections. A priori, this category
may not contain all objects of B. However using the same arguments
as in the proof of Theorem one can show that one obtains all
indecomposable objects in B as direct summands of bimodules of the
form for reduced expressions st . ..u. Thus Soergel’s category is
precisely B.

The following is Vermutung 1.13 in [So6].

CONJECTURE 5.5.2. (Soergel) For all w € W we have ch(B,,) =
If Soergel’s conjecture is true then, by Proposition [5.4.3
ch(R ®pr 'B] @ps R) = ch(B,,) = H

P+’
By Theorem [5.5.1} ch(R ®gr 'By @gs R) is equal to ch(’'B;]) regarded
as an element of H. Hence

ch('BJ) ="H.



CHAPTER 4

Soergel bimodules in low rank

In this chapter we determine the characters of some indecomposable
Soergel bimodules for finite, low rank Coxeter groups. We concentrate
on the non-singular situation (i.e. I = J = ()) however (as we have
seen in Section in the last chapter), verifying Soergel’s conjecture
in this case determines the characters of all singular Soergel bimodules.

If the ground field is C all the characters we discuss below (with the
exception of type Hs and Hy) are known by geometric methods (see
[So5]). However, as we mention in the introduction, it is also possible
to define Soergel bimodules in positive characteristic and finding an
approach to the characters in this situation seems to be a difficult
problem. Here we present a simple, combinatorial method by which
many characters can be determined if one knows the W-graph of the
corresponding Coxeter system.

The idea is that the basis {ch(B,) | x € W} of H given by the
characters of indecomposable Soergel bimodules is self-dual and has
positivity properties shared by the Kazhdan-Lusztig basis. By expand-
ing products of the form H, * ch(B,,) and ch(B,) * H, and using the
fact that the result must consist of a positive combination of bimodule
characters, one may often conclude that ch(B,) = H, inductively.

In order to carry this out it is essential to know how H, acts on
the Kazhdan-Lusztig basis from the left and right. This precisely the
information provided by the W-graph of the Coxeter system (W, .S).

The structure of this chapter is as follows. In Section [I] we recall the
definition of the W-graph. In Section [2| we define a subset (W) C W
based on the W-graph and show that ch(B,) = H, if z € o(W).
In the last Section 3| we discuss the results of computer calculations
determining the subset o(W) C W for all finite Coxeter groups of rank
less than or equal to 6.

1. The W-graph

Let (W,S) be a Coxeter system. In Section [2[ of Chapter [2| we
defined the Hecke algebra H, its standard basis {H,, | w € W} and its
Kazhdan-Lusztig basis {H, | w € W}. If x < w we defined pu(z,w)
to be the coefficient of v in the Kazhdan-Lusztig polynomial A, ,, and

81
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stated the multiplication formula:

(v+v HH, if sw <w

(102) ﬁsﬂw B { ﬂsw + Zx<w;sw<x M(ZL’, w)ﬂw lf 5w > w.

We want to explain how one may simplify this formula slightly.
Given w € W we define the left and right descent set to be

Lw)={seS|sw<w} and R(w)={se€ S |ws<w}.

Let us now extend u(z,y) so that p is symmetric and p(z,y) =0 if
and y are not comparable in the Bruhat order. If w <z, sw > w and
st < x then hy, , = vhs,, and hence pu(w,z) # 0 only when w = sx.
We may therefore rewrite as follows (see [KL1]):

(v+v HH if s € L(w)

—Ssw

1.03) HH, = ;
( ) e { ZIGW;SGE@U) ,u(x,w)ﬂx if 5 ¢ E(w>
Similarly one has
(v+v HH if s € R(w)
1.04) H,H, = o -

It follows that all the information about the action of H on the left
and right on the Kazhdan-Lusztig basis may be encoded in a labelled
graph, known as the W-graph. The vertices correspond to the elements
of W and are labelled with the left and right descent sets. There is an
edge between x and y € W if u(x,y) # 0, in which case it is labelled by
w(z,y). The important point for us is that, in order to know the action
of H, on the Kazhdan-Lusztig basis, it is only necessary to know the
W-graph and not all Kazhdan-Lusztig polynomials. This significantly
simplifies the necessary computer calculations in Section [3]

2. Separated Elements

Let V' be a reflection faithful representation of a Coxeter system
(W, S), let B denote the category of (non-singular) Soergel bimodules
and choose representatives {B,, | w € W} for each isomorphism class
of indecomposable Soergel bimodule (normalised as in Theorem .
We would like to show that their characters are given by the Kazhdan-
Lusztig basis. Using Theorem [5.5.1] one sees that the set {ch(B,,) | w €
W} yields a self-dual basis of H with certain positivity properties which
are shared by the Kazhdan-Lusztig basis. Sometimes this allows one
to conclude that ch(B,) = B,. This is the motivation behind the set
(W) to be defined below.

EXAMPLE 2.0.3. As motivation, let us consider some examples:

(1) Let v € W and suppose that sx < z, H.H, = H, and
ch(Bs:) = H,,. We know that B, is a direct summand of
B ®p Bs, with self-dual character. Hence ch(Bs,) = H,, by
the uniqueness of the Kazhdan-Lusztig basis.
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(2) Fix x € W and suppose that ch(Bs,) = H,, for all s € L(x).
Suppose further that the only Kazhdan-Lusztig basis element
that appears with non-zero coefficient in all expressions H H
with s € L(x) is H,. Then, using the fact that B, occurs as a
direct summand in Bs Qg By, for all s € L(x), it follows that
ch(B,) = H

T

We start with some definitions. Given an element h = > a,H, € H
we define the Kazhdan-Lusztig support to be the set

suppyr(h) = {# | ax # 0}

We say that h is KL-supported in degree 0 if all a, € Z.
Given h,h’ € H we may write the difference h’ — h in the standard

basis as
W—h=> a,H,.

If all a, € N[v,v™!] we write h < K. Note that if M is a direct
summand of N € B then ch(M) < ch(N).

LEMMA 2.0.4. Suppose M 1is a direct summand of a Soergel bimod-
ule N whose character is self-dual and KL-supported in degree 0. Then
the character of M is also self-dual, KL-supported in degree zero and

suppg (ch(F)) C suppg,(ch(G)).
Proor. We may write

ch(M) = Zamﬂx for some a, € Z[v,v"].

Now M occurs as a direct summand of the self-dual N whose character
is KL-supported in degree zero. Thus:

(V) € @2l = Dz,

ch(M) < ch(N) and ch(M) < ch(N)
Hence a, € Z for all x € W and the last claim follows by considering
the coefficients of v° in ch(N) =Y b, H,. O
Given a subset X C W define
X={reX|sx>z}and X° ={z € X |xs >z}

We now define a function fi : Y — P(W) from some subset Y C
W to the power set of W. This function and its domain are defined
inductively as follows:
(1) fwl(id) = {id}.
(2) Suppose we have defined fi on all y < z. Then it is possible
to define fy on x if there exists s € L(z) or t € R(x) such
that either

*fw (sx) = fu(sx) or fyy(xt)' = fo,(t).
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In this case we define fyy(z) to be the set:

ﬂ U suppgr(H H,,) | N ﬂ U suppre (H., )

seL(z) \wesfiy (sx) teR(x) \wefw (xt)t

REMARK 2.0.5. The condition in the definition for fy to be defined
at x € W may seem a strange. It is one way to force ch(B,) to be
supported in degree zero, which is crucial to our argument below. In all
examples that we have considered fy, is defined on all of W. However
we see no reason why this should be true in general.

DEFINITION 2.0.6. If fw is defined on x € W and fw(x) = {z}
we say that x is separated. The set of all separated elements will be

denoted by o(W).

EXAMPLE 2.0.7. Let W be a dihedral group
D, = (s,t]|s* =1 = (st)" = id).
If (st)™ (resp. (st)™s) is not the longest element then

fw((st)™) = {(st)™, (st)™ 1 ... st}
Jw((st)"s) = {(st)™s, (st)™ s, ... s}

and similarly for (ts)™ and (ts)™t. For the longest element wy one has

fw(wo) = {wo}.

It follows that the separated elements are {id, s,t, st,ts,wo}. In partic-
ular, Ay and Ay X Ay are the only rank two Coxeter groups in which

o(W)=W.
The following proposition shows the usefulness of the set o(WV):

PROPOSITION 2.0.8. If fy is defined on x € W then ch(B,) is
KL-supported in degree 0 and

suppg,(ch(Bs)) C fw ().
In particular, if v € o(W) is separated we have ch(B,) = H

Proor. Clearly ch(B;4) = H,,; and so we may assume by induction
that supp(ch(By)) C fw(w) for all w < z, where x € W is some
element on which fy is defined. Without loss of generality we may
assume, by the indutive definition of fy, above, that there exists some
s € L(z) so that *fy(sz) = fw(sz). Hence, by (1.0.2), the character
of B; ®r Bsx = H * ch(Bs,) is KL-supported in degree zero.

We may now apply Lemma to conclude that ch(B,) is KL-
supported in degree zero. As B, is a direct summand of all B; ® By,
for t € L(z) we conclude (again using Lemma that

suppr(ch(F)) € () suppgr(H.H,).

welfw (tr)
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(We may ignore those w ¢ fy (tx) because we know that ch(By,) is
supported in degree zero, hence so is ch(B,), and so they make no
contribution.) Similarly, if ¢ € R(z) then

suppgz(ch(B;)) C U suppg(H,H,).

we fy (xt)!

Taking the intersection over these conditions yields fy/(z) and the
proposition. U

3. Results of Computer Calculations

In this section we give some examples of the sets o(W) C W for
finite, low rank Coxeter groups. As is clear from the definition of
fw and the multiplication formulas in Section [I] the only information
needed to calculate o(W) and fyy is the Weyl group W together with its
W-graph. However no general description of the W-graph is known (for
descriptions of some subgraphs see [LS] and [Ke| and for a description
of the computational aspects of the problem see [dC2]).

Thus, in order to calculate fy and o(W) we have to restrict our-
selves to examples. This involves two steps:

(1) calculation of the W-graph of (W, 5);
(2) calculation of the function fy using the W-graph.

Step 1) is computational quite difficult. Luckily there exists the pro-
gram Cozeter written by Fokko du Cloux |[dC1], which calculates the
W-graph very efﬁcientlyﬂ Step 2) is then relatively straightforward.
A crude implementation in Magma (whose routines for handling Cox-
eter groups proved very useful) as well as the W-graphs obtained from
Cozxeter are available at:

home .mathematik.uni-freiburg.de/geordie/torsion/

This site also contains a complete description of the sets (W) and fy
for all examples discussed below.

By definition fy (w) = {w} if and only if w € o(W). If fi(w) #
{w} then fy (w) is a subset of W containing w as a maximal element.
Thus, in order to know fi is is enough to know the sets fy (w) for all
w ¢ o(W). We will refer to these sets as the critical sets and call the
maximal element w the index of set fy (w). For convenience we will
list the index first.

Thus for example, a listing

{w,z}
means that w is the index, fy (w) = {w,z} and either
ch(B,) = H,, or ch(B,)=H, + \H, for some A € N.
LAlthough the task of calculating the W-graph is computationally orders of

magnitude more difficult than the calculation of the function fy,, for any given
Coxeter group our program was always slower than Fokko’s!
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Because of invariance properties of the W-graph with respect to
diagram automorphisms and inversion the sets (W) and { fi (w)|w ¢
o(W)} are invariant under these operations. Hence, when listing crit-
ical pairs we will choose a representative of each orbit under inversion
and any diagram automorphisms.

3.1. A,,n < 6. Here o(W) = W. Thus, in any characteristic in
which one may define and classify Soergel bimodules one has ch(B,,) =
H, forallw e W.

3.2. A;. Here9 of the 40 320 elements in W do not lie in o (). We
display the elements in string and diagram form. Recall that the string
form of a permutation w € Sym,, is the sequence w(1)w(2)...w(n).
The critical sets (up to inversion and the diagram autmorphism s; —
S7, 8o+ Sg etc.) are shown in Figure Interestingly, the indices of

84627351 43218765

P R KK

57813462 15432876
n - {822 Y
62845173 21654387
n = [ Y
46718235 14327658
= (ST
56781234 21654387
m= 5B K X }
78345612 43218765

F1GURE 1. Critical Sets in A

ps and ps have already appeared in Kazhdan-Lusztig combinatorics.
They are hexagon permutations as defined by Billey and Warrington
[BW]. In [Bra| Braden has investigated the intersection cohomology
complex in SLg(C)/B corresponding to the index of ps; and reports
that the intersection cohomology complex over Z has 2-torsion at the
T-fixed point corresponding to the permutation 15372648.
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We believe (very tentatively) to have an argument that shows that
ch(B,) = H,, for w the index in p; for i = 1,2,3,4. Hence p5 and
pe are the only remaining cases in A;. Interesting, these permutations
are obtained by “doubling” the indices of the two singular Schubert
varieties in SLy(C)/B:

K 2K

3.3. Bs and B4. We describe the function fy for B4. The ordering
of the generators is as follows:

S t——Uu=——v

There are seven elements of W which do not lie in o(W). The critical
sets are:

p = {vuv,v}

pe = {uwvu,u}

ps = {vutvuv,uvuv}

ps = {vutsvutvuv, utvutvuv}
ps = {sutvutsvu, suvuv}

pe = {stsuvuts,stsv}

pr = {stsutvutsvut, stsuts}

Note that p;, po and p3 all lie in the parabolic subgroup isomorphic to
B3 and describe fy, on the 3 elements of W of type B3 which don’t
lie in o(W) in this case. In Example we have already seen the
existence of the sets p; and ps.

3.4. By and Bg. In Bs, 21 of the 3840 elements of W do not lie
in o(W). In Bg, 228 of the 46080 elements do not lie in o(W). In both
cases this is less than 1% of all elements.

3.5. D4. We label our generators s, t, u and v of W as follows:
u
/
s-1
AN
v

Here 4 of the 192 elements of D, are not in o(W). Representatives for
the critical sets are:

p = {sutvtsu, suv}

pe = {stsuvts,sts}
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The critical set p; is stable under the automorphism s — u +— v — s
and the orbit of p, gives the other three sets. Braden has discovered 2-
torsion in intersection cohomology of the Schubert variety correspond-
ing to the index in p; at the point suv, which is a nice coincidence with
our results.

3.6. D5 and Dg. In D5, 15 of the 1920 elements do not lie in
o(W). In Dg, 107 of the 23040 elements in Dg do not lie in o(W). In
both cases these correspond to less than 1% of all elements.

3.7. Eg. Here 691 of the 51840 elements of W (roughly 1%) do not
lie in o(W).

3.8. Fy. In Fy, 44 of the 1152 do not lie in o(W). This consists of
almost 4% of all elements.

3.9. (5. In this case we have already calculated (W) in Example
2.0.71 Here we obtain nothing new. If W = (st | s> = 2 = (st)b = 1)
then o(W) = {1, s,t, st,ts,we}. In this case direct arguments may to
used to verify that, in fact, ch(B,) = H,, for all w € W (see [So6]).

3.10. Hj; and H,. In Hj, 8 of the 120 elements do not lie in o(W).
In Hy, 1021 of the 14400 elements do not lie in o(WW). This high
percentage seems to be due to the large dihedral subgroups.

3.11. Further Calculations. The order of the group seems to
be the greatest obstacle to further computer calculations. It would
be interesting to know how many elements in Ag do not lie in o (W)
however this computation is out of reach at the moment (Cozeter can
calculate the W-graph in a few hours, and it is 88MB). It would also
be interesting to extend these calculations to the fundamental box of
low rank affine Weyl groups. By recent results of Fiebig [Fied], this
situation has strong connections to the Lusztig conjecture.
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