
1 Bernstein and Lunts’ Fundamental Example

1.1 Introduction

Let C∗ operate on Cn in the natural way and let X ⊂ Cn be a C∗-stable closed
subvariety. Because X is C∗-stable and closed the origin is contained in X.
It is a interesting and important problem to study the topology of X. Using
the C∗-action it is easy to see that the origin is a deformation retract of X
and hence ordinary homology and cohomology are uninteresting invariants of
X. Therefore in order to study, for example how singular X is, we need more
sophisticated machinery. One such tool is equivariant intersection cohomology.

We now want to sketch how Bernstein and Lunts’ approach this situation and
what they are able to prove. Let C = ICC∗(X) be the equivariant intersection
cohomology complex on X. Setting X0 = X \0 we have a diagram of topological
spaces:

{0} i // X X0
joo

And hence an exact triangle in Db
G(X):

i!i
!C // C // j∗j∗C

[1] //

Pushing everything onto a point, we then obtain an exact triangle in Db
G(pt):

i!C // p∗C // p∗j∗C
[1] //

One of the central results of Bernstein and Lunts’ book [2] is that Db
G(pt) has an

elegant description (via taking Hom with the contant sheaf) as a triangulated
category of differential graded modules over a differential graded algebra AG.
In our case (with G = C∗) the differential graded algebra AG is particularly
simple: it is a polynomial ring in one variable of degree 2.

Bernstein and Lunts also contruct a t-structure on the triangulated category
of differential graded modules. We are now able to state their theorem (albeit
in slightly diluted form):

Theorem 1.1.1. Let M be a differential graded module over AC∗ which corre-
sponds to p∗j

∗C under the correspondence of Bernstein and Lunts. Then the
above triangle in Db

C∗(pt) is isomorphic to the following triangle when viewed as
an triangle of differential graded modules:

τ≥M [−1] // τ<0M // M
[1] //

Moreover, it is possible to write τ≥M [−1] and τ<0M as free AC∗-modules with
trivial differential.

The objects which appear in the last triangle are explicitely computable and
hence one can obtain a feel for the beauty of Bernstein and Lunts’ treatment.
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The aim of this article is to give an explantion of this result. I assume that
the reader has some knowledge of the derived category of equivariant sheaves
as well as some experience with non-equivariant perverse sheaves (although I
hope to give a quick explanation of both). With this I am then able to give
an explanation of the above result which I hope will fill in some gaps in under-
standing which may be present when on reads the proof of Bernstein and Lunts.
I also hope that the introduction of weights into the derived category of equiv-
ariant sheaves (which was suggested by the article of Bradon and MacPherson
[3]) makes some of the proofs structurally clearer (this has at least been my
experience).

Unfortunately our explanation is far from complete. We assume the existence
of a ‘category with weights’ as well as the statement of the hard Lefschetz
theroem.

1.2 Fast and Furious G-Bundles

Before we begin describing Bernstein and Lunts’ category we need to recall some
concepts related to bundles.

1.2.1 Principle and Universal Bundles

We recall quickly the notion of a characteristic class. Let G be a topological
group. A principle G-bundle is a map of spaces:

E

π

��
B

where E is a G-space and π looks locally like the first projection E′ ×G → E′

(with the G-action trivial on E′). One checks that in a diagram

E

π

��
B′ // B

the topological pullback is naturally a principle G-bundle.
The crucial observation is then that bundles tend to get topologically simpler

when one pulls back. One is then led to suspecting the presence of a universal
G-bundle. That is a bundle π : EG → BG so that all (paracompact) principle
G-bundles can be obtained from the universal bundle by pulling back. It turns
out that one can be even more picky and require that the map f : B → BG
that gives the bundle via pull-back be unique up to homotopy. It is an amazing
fact that for any topological group G a universal bundle exists:

Theorem 1.2.2. For any topological group G a universal bundle EG → BG
exists.
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For the simple construction (due to Milnor) of such a bundle for any topo-
logical group G see [7]. When G is closed subgroup of GLn one can take a direct
limit of Stiefel mannifolds (see Brion [5]). We will sketch the case of G = C∗
below. We will need the following simple observation later:

Lemma 1.2.3. Let EG → BG be a universal bundle. Then all the homotopy
groups of EG vanish.

Proof. A rather rough way of seeing this is that two non-homotopic maps f, g :
X → EG would give two non-homotopic ways of getting the trivial bundle
X ×G → X which is forbidden in the definition.

.
We will now construct a universal C∗-bundle. For all n the ‘tautological

bundle’ Cn \ 0 → Pn−1C ist naturally a principle C∗-bundle. Taking the direct
limit as topological spaces gives C∞ \ 0 → P∞C. The following theorem states
that we have found a universal C∗-bundle.

Theorem 1.2.4. The principle C∗-bundle C∞\0 → P∞C is universal. In other
words, for any principle C∗-bundle π : E → B with B paracompact there exists
f : B → P∞C so that π is isomorphic to the bundle obtained by pulling back via
f . Moreover, f is unique up to homotopy.

Proof. For all the details see [7]. We will be happy to give a quick sketch. One
first observes that any map of bundles

E //

��

C∞ \ 0

π

��
B

f // P∞C

gives a Cartesian diagram. Hence, to find a map f whose pull back is π it is
enough to find a pair of horizontal maps above so that the diagram commutes.
(Another way of saying this is that any map of bundles over a fixed base space
is an isomorphism). Now there exists an open covering {Ui}i∈S over which the
bundle is trivial and, because B is paracompact, there exists a partition of unity
subordinate to {Ui}. In fact, one can assume that this partition if countable
(this is a trick that I will let Husemoller explain!). It is then a simple matter to
construct a C∗-equivariant map E → C∞ \ 0 which induces the desired map of
bundles.

To see that any two such maps are homotopic one notices that is is possible
to homotopically slide any two bundle maps so that the image only lives in the
even or odd terms of C∞ \ 0 and P∞(C). Given two such maps one slides one
map into the even terms, the other into the odd and then one can then easily
write down a linear homotopy between them.
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1.2.5 Chern classes for priniple C∗-bundles

We now return to general theory. Suppose that we have a group G and have
constructed, as we did above for C∗, a universal bundle π : EG → BG. Then the
definition of a universal bundle ensures that, for a given space B, principle G-
bundles on B are in canonical bijection with homotopy classes of maps B → BG.
Suppose further that we know a set of generators for H∗(BG; Z). Then, for any
(homotopy class of a) map f : B → BG we obtain canonically elements of
the cohomology of B by pulling back the generators of H∗(BG; Z). But, by
the above discussion such a collection of elements in H∗(B; Z) can be viewed
as invariants of the G-bundle f∗BG. This is the point of departure for the
theory of “characteristic classes”: the image of each generator of H∗(BG) gives
a “characterstic class” of the bundle in H∗(B) and one can study to what extent
these classes determine the bundle.

Let us restrict ourselves to the simplest case of G = C∗. Then, for any C∗-
bundle π : E → B we can find a map f : B → P∞C so that the bundle obtained
by pulling back is isomorphic to π. Because H∗(P∞C); Z) is isomorphic to Z[T ]
(with deg T = 2) the only invariant of π that we obtain in H∗(B) is the image
of T under f∗ : H2(P∞C) → H2(B). We will call this image the Chern class of
the bundle π. We have the following amazing theorem (of Chern? Reference?):

Theorem 1.2.6. Let B be a paracompact space. Then the Chern class of a
C∗-bundle π : E → B completely classfies π. Moreoever, for every element of
γ ∈ H2(B; Z) there is a C∗-bundle over B having γ as its Chern class. Hence,
C∗-bundles over B are in canonical bijection with H2(B; Z).

1.3 The Equivariant Derived Category

For the rest of this work we will be dealing with Db
G(X) – the “derived category

of G-equivariant sheaves on X”. However, when one hasn’t met the formalism of
Bernstein-Lunts [2] or one has never worked in a derived category, the theory can
be overwhelming and one can quickly loses sight of what one really wants! Hence
we want to spend a few paragraphs motivating the concept of an equivariant
sheaf and show why one needs the formalism of Bernstein-Lunts in order to get
the category that one wants.

1.3.1 What is an equivariant sheaf?

Almost every “topological object with extra structure” can be viewed as a pair
(X, O) where X is a topological space and O is a sheaf. For example, a differ-
entiable manifold is a Hausdorff topological space M together with a sheaf so
that, for every point p, there exists a neighbourhood U of p so that O(U) looks
like the C∞-functions on an open set of some Rn. Similarly one can define a
topological or complex manifold or an algebraic variety or scheme. Hence, for a
topological space X a sheaf on X formalises the “extra structure” that X may
have.
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When one first hears the defition of a sheaf one is usually told to think
of the sections over an open set as “functions” on this set: it is precisely the
requirement that such sections should behave like functions which distinguishes
a sheaf from a presheaf. The equivalent notion for the sections over a set U of
a G-equivariant sheaf are G-invariant functions on U . So a G-equivariant sheaf
F on a G-space X should be a sheaf such that the sections over an open set are
“G-invariant”. Note that a set of continuous functions from X into a space is
G-invariant precisely when the function space admits an G-equivariant action
of G. For sheaves the analogy of the space of functions is the étale space of the
sheaf (see [10]). Hence we are led to the following definition:

Definition 1.3.2. A G-equivariant sheaf (or sets) on a G-space X is a sheaf
F on X together with an equivariant action of G on the étale space F .

Note: The one problem with this definition is that it completely falls apart
in the algebraic situation (for reasons which I don’t yet understand!). In this
situation one has two maps from G ×X to X: one can either operate with G
or project. One then defines a G-equivariant sheaf on X to be a sheaf together
with an isomorphism between the two sheaves obtained by pulling back along
the operation or the projection (together with compatibility conditions). For
discussion in this direction see the fantastic book [6] of Chriss and Ginzburg. For
a (poor) explanation of why this leads to the above definition in the topological
situation see [10].

Now, let us look at some examples of equivariant sheaves:
Equivariant sheaves on a point: Assume that X is a point. Because an étale

space over a point is simply a discreet set, a G-equivariant sheaf is an action of
G on a discreet space. If G is locally connected then this action factorises as
an action of G/G0 on a discreet space (where G0 is the identity component).
Hence, if G is locally connected we have an equivalence of categories:

{ G-equivariant sheaves on a point} ∼ // {sets with an action of G/G0}

When the group acts freely: Suppose X is a G-space and G operates topo-
logically freely on X. That means, every point in X has an open neighbourhood
that looks like G × U with the operation of G only on the first factor (so we
can think of the set U as a ‘normal cross-section’ to the action of G). Then it
is a theorem (which is obvious if one restricts oneself to the case of continuous
invariant functions) that a sheaf on G-equivariant sheaf on X is the same as a
sheaf on X/G. Hence we have an equivalence of categories (see [10]):

{ G-equivariant sheaves on a free space X} ∼ // { sheaves on X/G}

Equivariant sheaves are harder than sheaves on the quotient space: After
the example above one might think that every G-equivairant sheaf on X is the
same as a sheaf on the quotient space. This is not the case, as can be seen when
one considers G = R>0 acting on X = R≥0. Then the quotient space X/G
consists of two points and four open sets (draw it!). In particular, the category
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of sheaves on X/G is not equivalent to sheaves on a point. However one can
show that any G-equivariant sheaf on X is a constant sheaf. Hence the category
is equivalent to the category of sheaves on a point.

One can have fun detemining the category of sheaves on various simple G-
spaces. See [10] for more examples. In particular, one might like to think about
the following example. Let R operate on the circle S1 through rotation. What
are the equivariant sheaves on S1 with respect to this action?

1.3.3 Why do we want a derived category?

Let us forget that G operates on X and turn our minds back to normal sheaves on
X. We have already convinced ourselves that sheaves really are the correct lan-
guage to talk about spaces. We now come to two major insights of Gröthendieck
that are still (at least for the author) a little mysterious. The first is that one
should not restrict attention to sheaves, but should also consider complexes of
sheaves.1 The second is to realise that if we have two complexes of sheaves F
and G and a map between then such that the the induced map H(F ) → H(G )
is an isomorphism, then F and G should be seen as the same sheaves – this is,
in effect, what happens when we go to the derived category.

Gröthendieck then showed, that when one makes these two assumptions the
only “natural” extentions of the functors f∗, f!, f∗ etc. to derived categorys
yields naturally, and gives a richer interpretation to, the techniques of algebraic
topology and homological algebra. For example, if p : X → pt is the projection
to a point and X is the constant sheaf on X, then p∗X ‘is’ the cohomology of
X. Moreover, many deeper results in algebraic topology, for example Poincarè
duality, become formal consequences of relations between functors (after the
work of Gröthendieck’s student Verdier).

In this way one slowly becomes convinced the the derived category is really
the right place in which to do algebraic topology. In fact (and this will be
important below) we should see the derived category as a categorification of
cohomology: in cohomology, for each map f : X → Y , we get two graded
algebras and a homomorphism between them; in Gröthendieck’s approach, for
each map f : X → Y we get two categories, D(X) and D(Y ) and functors
between them.

1.3.4 What is equivariant cohomology?

Recall from Section 1.2.1 that for any topological group G there exists a universal
bundle EG → BG. It is a simple consequence of what it means to be universal
that EG is unique up to G-equivariant homotopy. If X is a G-space we let G
operate diagonally on X ×EG and denote the quotient space under this action
by X ×G EG. We now define the G-equivariant cohomology, which we will
denote by H∗

G(X), to be the cohomology of the quotient space X ×G EG. Note
that, since EG is unique up to equivariant homotopy, H∗

G(X) is well defined.

1That is, a family {Fi} of sheaves and differentials di : Fi → Fi+1 so that di+1di = 0.
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Note that the map X → pt induces X ×G EG → BG (= pt ×G EG) and
hence the equivariant cohomology of X is always a module over the equivariant
cohomology of a point; which in turn is the cohomology of BG. Hence, when
dealing with a group G, the first step is usually to work out H∗

G(pt) = H∗(BG).
As seen in Section 1.2.5, the calculation of H∗(BG) is also vital to the definition
of characteristic classes. Since the theory of characteristic classes was developed
before that of equivariant cohomology the theory gets a head start! We have,
for example, the following result (see, for example, Brion [5]):

Theorem 1.3.5. Let G be a reductive linear algebraic group over C with maxi-
mal torus T and Weyl group W and let S be the group of characters of T . Then
H∗

G(pt) is equal to the W -invariant polynomial functions on T ⊗Z Q, with the
coordinate function of each element of S having degree 2.

Hence, for example, H∗
C∗(pt) = C[T ] with T having degree 2. (This is also

clear from the fact that BC∗ = P∞C).
Note that, if X is a free G-space, then X×G EG → G\X is a fibration with

fibre EG. However, we have seen in Lemma 1.2.3 that EG is always contractible
and hence, if X is a free G-space we have H∗

G(X) = H∗(G \ X). This should
remind the reader of the corresponding result for equivariant sheaves.

Up until now we have said very little about what equivariant cohomology
really is. To explain this we need a little more formalism. We say that a map
f : P → X is ∞-acyclic, if for all complexes of sheaves F on X, f∗f

∗F and F
are isomorphic and that this property holds if we replace f by f ′ in a Cartesian
diagram:

P ′ //

f ′

��

P

f

��
X ′ // X

[In modern language: we require that the adjunction morphism id → f∗f
∗ is an

isomoprhism and that this property be stable under base change.2]
Now let f : P → X be an ∞-acyclic map and X and P the constant sheaves

on X and Y respectively. Since f must be surjective we have f∗X = P and the
fact that f is ∞-acyclic implies that f∗f

∗X and X are isomorphic. Hence, in
particular, H∗(P ) and H∗(X) are isomorphic. This shows that ∞-acyclic maps
are very special indeed!

We have the following result which characterises∞-acyclic maps (it is quoted
in Bernstein-Lunts [2] as a variant of the Vietoris-Begle theorem.):

Lemma 1.3.6. A map f : P → X is ∞-acyclic if it is a topological fibration
and the fibres have trivial cohomology.

We now attempt to motivate equivariant cohomology a little. Let X by a G-
space. Equivariant cohomology is, very roughly, the cohomology of the quotient

2This is another ‘Gröthendieck philosophy’: most properties worth considering are stable
under base change!
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space X/G. However, simply taking the cohomology of X/G is too rough for
two reasons. The first is that X/G is rarely a well-behaved space and hence
one cannot expect taking cohomology to be meaninful. The second reason is
that, even if X/G is well-behaved (for example, a manifold) we have still lose
too much information on the operation of G on X when we pass to X/G. For
example, if G operates on a point then, in passing to the quotient space (which
is again a point) we lose all information about G.

However, if G operates topologically freely on X then we can define H∗
G(X) :=

H∗(X/G). Otherwise we ‘resolve X’ by finding a ∞-acyclic map f : P → X so
that G operates topologically freely on P , and then define H∗

G(X) := H∗(P/G).
At this point it is a nice exercise (using the fact that ∞-acyclic maps are stable
under base change) to show that, with this alternative defintion, H∗

G(X) does
not depend on the choice ∞-acyclic resolution.

To see that the two definitions are equivalent notice that EG is a topolog-
ically free G-space (since it is a principle bundle) and is contractible (Lemma
1.2.3). Hence, by Lemma 1.3.6 above, EG → pt is ∞-acyclic. Hence, by the
definition of ∞-acyclic, for any space X the first projection X × EG → X is
a ∞-acyclic. Hence H∗

G(X) = H∗(X ×G EG) which recovers our earlier defi-
nition. (Note that this also shows that a ∞-acyclic resolution of a G-space X
always exists – a fact that is initially not clear. This is known as the Borel
construction).

1.3.7 Bernstein and Lunt’s Category

We have now seen the three skeletons of what we want the ‘equivariant derived
category’ to be: we want it to be an ‘extension’3 of the category of equivariant
sheaves and we want that it is a ‘categorification’ of equivariant cohomology, in
the same way that the derived category is a categorification of normal cohomol-
ogy.

We might naively define D+
G(X) to be the derived category of equivariant

sheaves — that is, an element of D+
G(X) should be a complex of equivariant

sheaves (up to quasi-isomorphsim). However, simple examples show that such a
definition is silly. For example, consider the group S1 and the two S1-spaces S1

itself and a point. Then, after what we have seen in Section 1.3.1 the categories
of equivariant sheaves on these two spaces are equivalent, and hence their derived
categories are also equivalent. However we would like our categories to be able
to tell the difference between a point and a circle!

As in the case of equivariant cohomology, it is clear how we should define
our category if G operates freely on X. For, as we mentioned in Section 1.3.1,
we have an equivalence (where π : X → X/G is the projection):

{ G-equivariant sheaves on X} ∼ // { sheaves on X/G}

π∗F F
�oo

3More precisely: we want a t-structure on our category so that the heart is the category
of equivariant sheaves.
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And hence it is natural to define D+
G(X) to be the derived category D+(X/G).

Now, if G does not operate topologically freely on X we have seen that we can
always find a ∞-acyclic map of G-spaces f : P → X. Then, using this map (or
rather the functors f∗ and f∗) we can identify D+(X) with a full subcategory
of D+(P ). The advantage here is that we know which objects in D+(P ) are
G-equivariant – they are precisely the objects F that ‘come from’ P/G in the
sense that there exists G ∈ D+(P/G) so that π∗G = P (where π : P → P/G is
the quotient map). Hence we are led to the following definition:

Definition 1.3.8. Let X be a G-space and choose a ∞-acyclic G-map f :
P → X so that G operates freely on P and let π : P → P/G be the quotient
map. Then objects in D+

G(X) consist of triples (F ,G , α) where F ∈ D+(X),
G ∈ D+(P/G) and α is an isomorphism f∗F → π∗G . A morphism between
two objects (F ,G , α) and (F ′,G ′, α′) is a pair of morphisms b : F → F ′ and
q : G → G ′ so that the following diagram in D+(P ) commutes:

π∗G
π∗q // π∗G ′

f∗G
f∗q //

α

OO

f∗G ′

α′

OO

Again one can show using base change that different choices of ∞-acyclic
resolutions f : P → X yield equivalent categories. Note also, that if G already
operates topologically freely on X then we can choose id : X → X as our ∞-
acyclic resolution and recover the equivalence D+

G(X) ∼ // D+(X/G) . Lastly,

replacing D+ with Db throughout the above definition we obtain the bounded
equivariant derived category which we will denote Db

G(X).
It is difficult to describe D+

G(X) or Db
G(X) in most cases. In fact, it is an

area of current research to describe Db
G(X) when G has finitely many orbits on

X. However, if we restrict ourselves to the case of X = pt we have the following
nice description given Bernstein and Lunts [2]:

Theorem 1.3.9. The category Db
G(pt) is equivalent to the subcategory of Db(BG)

consisting of those complexes which locally constant cohomology sheaves.

At this point we will leave a further description of the general equivariant
derived category (in particular the definition of functors) to Bernstein and Lunts’
book [2]. I hope that at this point the reader feels motivated to learn more —
this has at least been my experience!

1.4 The equivariant category in the algebraic situation

We now want to leave the topological situation and specialise to the case of
complex algebraic varieties. This immediately introduces two problems which
we will now attempt to describe. In the topological case if X is a G-space then
X/G always exists. Moreover, if the action of G on X is topologically free then
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X → X/G is a topological fibration. Niether of these statements remain true
for varieties. We now give a definition which defines a class of spaces for which
the above two properties hold.

Definition 1.4.1. Let X be a complex algebraic variety, acted on by a linear
algebraic group G. A resolution of X is a map f : P → X of G-varieties so
that: (i) f is a Zariski locally trivial fibration with smooth fibres; (ii) G acts
Zariski freely on P .

Note that, as a consequence of (ii), if f : P → X is a resolution then P/G
exists and the map P → P/G is a Zariski locally trivial fibration.

The second problem is that, in the definition of Db
G(X) it was vital to be

able to choose a ∞-acyclic map of G-spaces f : P → X so that G operates freely
on P . However, even when G = C∗ and X = pt we have seen thata natural
choice P = C∞ \ 0 is infinite dimensional and therefore is not a variety. It is in
fact easy to see (because H∗

C∗(pt) = C[T ] is infinite dimensional) that it is not
possible to find a C∗-variety P and a map f : P → pt that is ∞-acyclic.

We conclude that, in the category of G-varieties, where G is a linear algebraic
group, there are not enough ∞-acyclic maps. In the next section we will see
how to repair this problem!

1.4.2 What happens when there are not enough ∞-acyclic maps?

The philosophy of how one constructs Db
G(X) when there are not enough ∞-

acyclic resolutions exist is easy: one constructs ‘approximations’ to Db
G(X) and

then views Db
G(X) as a ‘limit’ of these approximations.4 However in practice

the definition is a little tedious. Bernstein and Lunts [2] give two equivalent
definitions. We will work with the second, which we feel is more appropriate to
the algebraic situation:

Definition 1.4.3. Let X be a complex algebraic variety acted on by a linear
algebraic group G.

An object F ∈ Db
G(X) is an association which assigns to each resolution

f : P → X an object F (P ) ∈ Db(P/G) and each map of resolutions α : P → Q
over X an isomorphism F (α) : F (P ) → α∗F (Q) (where α : P/G → Q/G is
the quotient map).

A morphism between two objects F and G in Db
G(X) is a morphism between

F (P ) → G (P ) for every resolution f : P → X so that the obvious diagram
commutes.

Let us forget quickly the adjective ‘resolution’ in the definition and consider
what this definition means in terms of the earlier topological situation. Here a
∞-acyclic map of G-spaces P → X with P a topologically free G-space always

4The astute reader will have noticed that have only mentioned the construction of the
bounded equivariant derived category. This is because it is only possible to construct the
unbounded category D+

G(X) when a ∞-acyclic map exists.

10



exists and for any resolution Q → X we have a Cartesian square:

Q×X P
α //

β

��

P

��
Q // X

Now, if F is an object in Db
G(X) then we have isomorphisms β

∗
F (Q) →

F (Q ×X P ) → α∗F (P ). Now, by base change, β is ∞-acyclic and hence,
applying β∗ to the above isomorphisms we obtain that F (Q) → β∗α

∗F (P ) is
an isomorphism. In other words, if an ∞-acyclic resolution f : P → X exists
then the complex F (P ) ∈ Db(P/G) determines F . Thus we recover our earlier
definition (which should be reassuring for the reader!).

1.4.4 A technical point on resolutions

In the definition of the previous section we have ignored a subtle point which we
now want to mention. Notice that, in the definition of Db

G(X) for a G-variety
X we have not considered all G-maps f : P → X with the G-operation on P
topologically free, rather we have restricted ourselves to particularly nice maps
which we called ‘resolutions’. The problem here is that there might not be
enough resolutions for our above definition to yield the right category!

To give a little more detail we first need the notion of an n-acyclic map. For
this, let Db(X) be the bounded derived category and if I ⊂ Z is an interval, let
DI(X) denote the full subcategory of complexes whose cohomology sheaves are
non-zero only for i ∈ I. Now let I = [0, n]. A map f : P → X is called n-acyclic
if, for all sheaves F ∈ DI(X), the natural morphism F → τ≤nf∗f

∗F is an
isomorphism. The reader can check that a map f : P → X is ∞-acyclic if and
only if it is n-acyclic for all n. Bernstein and Lunts then give precise conditions
on a family of maps f : P → X so that the definition of the previous section
gives the ‘right’ category. In our situation we can express these conditions in
the following:

Lemma 1.4.5. Let X be a G-variety. Assume that for all n there exists an
n-acyclic resolution f : P → X. Then the algebraic definition of Db

G(X) is
equivalent to the topological definition of Db

G(X) (that is, the definitions in 1.3.8
and 1.4.3 are equivalent).

Now the existence of an n-acyclic resolution for a G-variety X follows via
base change from the existence of such a resolution when X = pt. Hence the
question is reduced to the following: given a linear algebraic group G, does there
exist an n acyclic resolution of a point for all n. The standard construction of a
GLn bundle over a Grassmannian (see, for example, Chapter VI of Shafarevich
[9]) gives a positive answer for GLn:

Lemma 1.4.6. For any n there exists an n-acyclic resolution of a point for
G = GLn(C).

11



However the existence of n-acyclic resolutions of a point for arbitrary linear
algebraic groups remain a mystery for the author!

1.4.7 Equivariant Intersection Cohomology Complexes

Let us start by recalling what an intersection cohomology complex is. If X is a
smooth complex projective variety the cohomology H∗(X) satisfies a number of
extremely deep properties: in particular Poincaré duality and the hard Lefschetz
theorem. However, all of this theory completely falls apart when X is singular,
and hence no longer a complex manifold. Goresky and MacPherson realised that
the reason for the failure of Poincaré duality is that one cannot intersect cycles
nicely on singular spaces. They then defined a cohomology theory for possibly
singular varieties in which certain cycles (those for which intersections are not
well behaved) are not allowed. There theory was a remarkable success and the
corresonding cohomology groups are known as the ‘intersection cohomology’ of
the space, and denoted IH∗(X). (For an excellent introduction to intersection
cohomology see the book edited by Borel [4] or the notes of Rietsch [8]).

Of course the next step was to take the combinatorial definition of intersec-
tion cohomology and interpret it sheaf theoretically; that is, just as the normal
cohomology of a space if the cohomology of the constant sheaf, the intersection
cohomology of a variety X should be the cohomology of an ‘intersection coho-
mology complex’ IC(X). This result was achieved by Deligne who also gave two
very elegant constructions of IC(X). One of which we will now describe (for
the other construction, and much more, see the book of Beilinson, Bernstein
and Deligne [1]).

We first construct the so called perverse t-structure. Recall that a complex
F ∈ Db(X) is constructible if there exists a stratification X = tS∈SS of X
with smooth subvarieties so that i∗SF is locally constant for each strata S (where
iS : S ↪→ X is the inclusion). We will denote the full subcategory of constructible
complexes by Db

c(X). We make the following definitions:

pD≤0(X) =
{

full subcategory of complexes F ∈ Db
c(X)

satisfying Hn(i∗SF ) = 0 for n > −dimC S

}
pD≥0(X) =

{
full subcategory of complexes F ∈ Db

c(X)
satisfying Hn(i!SF ) = 0 for n > −dimC S

}
In both definitions a stratification X = tS∈SS is chosen so as to make the
F ∈ Db

c(X) constructible and iS : S ↪→ X denotes the inclusion.
The pair (pD≤0(X),p D≥0(X)) give the perverse t-structure on Db

c(X) and,
by general theory, the heart Perv(X) :=p D≤0(X) ∩p D≥0(X) is an abelian
category. We also get a projection functor π : Db

c(X) → Perv(X). (The analogy
of course for this construction is the standard t-structure (D≤0(X), D≥0(X))
which gives the abelian category of sheaves sitting inside Db(X) together with
the projection functor H0).

If X is smooth then IC(X) should be a locally constant sheaf (traditionally
sitting in degree −dX := −dimC X – so that 0 is the “mirror” of Poincaré
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duality). Otherwise, one chooses a smooth open dense subvariety j : U ↪→ X
and extends a local system L (again sitting in −du := −dimC U) ‘between’
j∗ and j! in the following sense. Because j∗j∗

∼ // id and j∗ = j! there is an
adjunction morphism j! → j∗.5 We then have the following diagram (where α
is the map given by the adjunction morphism):

in Perv(U) in Db(X) in Perv(X)

j!L [dU ]

α

��

//___ πj!L [−dU ]

π(α)

��
L [−du]

44hhhh

**VVVV

j∗L [dU ] //___ πj∗L [−dU ]

Now, Perv(X) is an abelian category and hence we can define the intermediate
extension of L [−du] denoted j!∗ to be the image of π(α). In fact, j!∗ is a functor
from Perv(U) to Perv(X). We then define the intersection cohomology complex
extending L to be j!∗L [dU ]. We will not say any more in this general setting
but rather refer the reader again to [1], [4] or [8].

In the equivariant situation one copies the construction above, adjusting
to the added technicalities of the equivariant situation. We will describe this
construction now in a little more detail than given in Bernstein and Lunts.

Our first task is to construct the abelian category of perverse sheaves sitting
inside Db

G(X). For any complex variety Y let dY denote the complex dimension.
If f : P → X is a resolution let dP/X = dp − dX denote the complex dimension
of the fibres.

Definition 1.4.8. We say that F ∈ Db
G(X) is perverse if, for every resolution

f : P → X, F (P )[dP/X − dG] ∈ Db(P/G) is perverse. The full subcategory of
equivariant perverse sheaves on X will be denoted PervG(X).

Bernstein and Lunts define a forgetfull functor by For : Db
G(X) → Db(X) by

For(F ) := F (X ×G) ∈ Db(X ×G G) ∼ // Db(X) (the last equivalence follows
because X ×G G and X are canonically isomoprhic). Bernstein and Lunts then
say that F ∈ Db

G(X) is perverse if For(F ) ∈ Db(X) is. To get the equivalence
between the two definitions notice that for any resolution f : P → X both

maps X P
foo π // P/G are fibrations with smooth fibres. Hence the equivalence

follows from the following lemma:

Lemma 1.4.9. Let f : P → X be a locally trivial fibration with smooth fibres
of dimension dP/X . Then F ∈ Db(X) is perverse if and only if f∗F [dP/X ] ∈
Db(P ) is perverse.

Proof. The proof is straightforward using the condition of what it means to be
perverse and the fact that it is possible to replace f ! with f∗[2dP/X ] if f is a

5This is just an extension of the fact that, before we consider derived functors, j!F is a
subsheaf of j∗F .
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fibration with smooth fibres (unfortunately I don’t know a reference for this
result (maybe Kashiwara?)).

One can easily show that PervG(X) is the heart of a t-structure (by adjusting
the earlier definition by the shifts above) and is therefore an abelian category
(again by general theory). We also get a projection functor π : Db

G(X) →
PervG(X) which will be important in the definition of the equivariant intersec-
tion complexes.

We will now describe the construction of the equivariant intersection com-
plexes which will parallel the above construction. Let X be a complex algebraic
variety acted upon by a linear algebraic group G and let U be an open, dense,
smooth and G-invariant subset of X and denote by j : U ↪→ X the inclusion
(such a U exists: take, for example, all the smooth points). Then one can show
that an equivariant perverse sheaf G on U is nothing other than a G-equivariant
local system L on U shifted so as to sit in degree −dU . Let L be such a per-
verse sheaf. Then, one can also show that j∗j∗ is naturally equivalent to the
identity functor and that j! and j∗ are isomorphic. Hence, exactly the same
diagram above functions in the equivariant situation and we can define the G-
equivariant intersection cohomology complex extending L , denoted ICG(X, L )
to be j!∗L .

The above construction is very theoretical and we want to spend a few
moments bgiving a sense for what these complexes are. Let X, U and L be as
above and recall that for any resolution g : V → U , L (V ) is a local system on
V/G. Now let f : P → X be a resolution and let V = f−1U . Then V is also
an open and dense subvariety of P . Denote by jV/G the inclusion of V/G in
P/G. Then one can show (where j!∗ is the equivariant functor and j

V/G
!∗ is the

non-equivariant functor between Perv(U) and Perv(P )):

Lemma 1.4.10. We have: (j!∗L [dX ])(P ) = (jV/G
!∗ L (P )[dP/G])[dG − dP/X ].

The formula only looks complicated! For a proof one only needs to write
out the equivariant functors j! and j∗ and the definition of what it means to be
perverse. We have the following nice consequence:

Lemma 1.4.11. There is a natural identification:

ICG(X, L )(P ) ∼ // IC(P/G,L (P ))[dG − dP/X ]

Hence the equivariant intersection cohomology complexes consist simply of
a shifted intersection cohomology complex on each space P/G where P → X is
a resolution; moreover, the local system which the complex extends is given by
L (P ).

1.5 The Fundamental Example

1.5.1 The Easiest Example

Before we consider the general question, let us consider the simplest case of
the fundamental example. Let C∗ operate on X = Cn in the natural way (by
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rescaling vectors). Then, following the notation in the introduction, X0 = Cn\0,
and we have the following diagram of spaces:

{0} i // X X0j
oo

Let C be the equivariant intersection cohomology complex ICC∗(X) on X. In
this case, X is smooth and so C is just the constant sheaf in degree −n on each
resolution of X (or, if we take the easier topological approach, the constant
sheaf on X ×C∗ (C∞ \ 0)). Let Q[T ] be the C∗-equivariant cohomology ring of
a point. Then we have, as Q[T ]-differential graded modules):

p∗C = Q[T ][n]: Because Cn ×C∗ (C∞ \ 0) → 0 ×C∗ (C∞ \ 0) = P∞C is a
homotopy equivalence.

p∗j
∗C = Q[T ]/(T )[n]: Because (C∞ \ 0) → X0 ×C∗ (Cn \ 0) → X0/C∗ =

Pn−1C is a fibration with contractible fibres.
i!C = Q[T ][−n]: Because, in this case i! = i∗[−2n].
All of this fits in the the following exact triangle:

i!C = Q[T ][−n] // p∗C = Q[T ][n] // p∗j∗C = Q[T ]/(Tn)[n] →

n + 3 0 0 0

n + 2 QT QTn+1 0

n + 1 0 0 0

n Q QTn 0

n− 1 0 0

n− 2 QTn−1 QTn−1

...
...

...

−n + 2 QT QT

−n + 1 0 0

−n Q Q

Where the first map is multiplication by Tn and the second if the projection
(how to I show this in the diagram above?).

1.5.2 Equivariant Cohomology and the Lefschetz operator

Suppose that we are in the situation of the introduction: C∗ operates on Cn in
the natural way and X ⊂ Cn is a closed, C∗-stable subvariety and X0 := X \ 0.
The fact that X0 comes with an embedding in Cn \ 0 gives us an embedding
of the quotient X := C∗ \ X0 in Pn−1C and hence, if we choose a generator
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of the cohomology of Pn−1C we obtain, by pulling back via the embedding
X ↪→ Pn−1C, an element of the cohomology of X. This is the Lefschetz operator
corresponding to the embedding X ↪→ Pn−1C. Writing out the definitions, and
embedding Pn−1C in P∞C, we see the the Lefschetz operator agrees with the
Chern class of the principle C∗-bundle X0 → X.

We now want to relate the Lefschetz operator on

Proof. Consider the following diagram of spaces:

C∞ \ 0

��

X0 × (C∞ \ 0)oo //

��

X0
//

��

C∞ \ 0

��
P∞C X0 ×C∗ (C∞ \ 0)πoo f // X

i // P∞C

All squares are Cartesian and hence the two bundles that we obtain by pulling
back C∞ → P∞C via π and i ◦ f are isomorphic. However C∞ → P∞C is a
universal bundle and so π and i ◦ f are homotopic. Hence, if T is a generator
for H∗(P∞C; Q) then π∗T = f∗i∗T . The result then follows since i∗T is the
Lefschetz operator and π∗T is the equivariant operator.

1.5.3 Schrott!

We first need the notion of an n-acyclic map. For this, let Db(X) be the bounded
derived category (consisting of complexes F whose cohomology sheaves Hi(F )
are non-zero for only finitely many i). If I ⊂ Z is an interval, let DI(X) denote
the full subcategory of complexes whose cohomology sheaves are non-zero only
for i ∈ I.

Definition 1.5.4. Let I = [0, n]. A map f : P → X is called n-acyclic if, for all
sheaves F ∈ DI(X), the natural morphism F → τ≤nf∗f

∗F is an isomorphism.

There are two simple consequences of the definition for a n-acyclic map
f : P → X. The first is that H∗(P ) and H∗(X) agree up to degree n. The
second is that if I = [a, b] is an interval with b−a ≤ n then, for any F ∈ DI(X)
we have that F → τ≤bf∗f

∗F is an isomorphism.
Now, note that if f : P → X is n-acyclic of G-spaces, and G operates on

P such that the quotient P/G exists as a variety we can recover a ‘chunk’ of
the equivariant derived category by recycling the old argument: for any interval
I = [a, b] ⊂ Z with b − a ≤ n we can use the functors f∗ and τ≤bf∗ to identify
DI(X) with a subcategory of DI(P ) — a category in which we know what
it means to be equivariant. Hence, a G-equivariant object on X should be a
complex F ∈ DI(X), a complex G ∈ DI(P/G) and an isomorphism α between
f∗F and π∗G (where π : P → P/G is the projection).6 We will temporarily
denote this category by DI(X, P ).

6We are doing nothing more than rehashing the definition from the previous section!
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However, just as in the topological situation there are many candidates for
an n-acyclic map f : P → X. There is also the question of how the cate-
gories behave as one takes bigger and bigger intervals. The following lemma of
Bernstein and Lunts [2] is fundamental:

Lemma 1.5.5. Let I = [a, b] and J = [c, d] be an intervals with I ⊂ J and let
f : P → X and g : Q → X be n- and m-acyclic maps respectively. Assume
further that n > b − a and m > d − c. Then the categories DI(X, P ) and
DI(X, Q) are equivalent. Moreover, if n > m there is a fully faithful functor
embedding DI(X, P ) in DJ(X, Q).

Hence, in order to define DI
G(X) we don’t need to worry about the choice of

map f : P → X; for any interval I ⊂ Z, we find an n-acyclic resolution P → X
with n bigger than the length of I and define:

DI
G(X) := DI(X, P )

The second part of the lemma then allows us to define the equivariant
bounded derived category Db

G(X) as the limit over all intervals I ⊂ Z. As
a formula:

Db
G(X) := lim

I⊂Z
DI

G(X)

One can of course show that if we use the above definition to define the topolog-
ical category then one has an equivalence with a suitable bounded subcategory
of DG(X).
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