An example of higher representation theory

Geordie Williamson Max Planck Institute, Bonn

Quantum 2016, Cordoba, February 2016.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

First steps in representation theory.

We owe the term group(e) to Galois (1832).

En d'autres termes, quand un groupe G en contient un autre H, le groupe G peut se partager en groupes, que l'on obtient chacun en opérant sur les permutations de H une même substitution ; en sorte que

 $G = H + HS + HS' + \dots$

1. Écrite la veille de la mort de l'auteur. (Insérée en 1832 dans la Revue encyclopédique, numéro de septembre, page 568.) (J. LIOUVILLE.)

- 27 -

Et aussi il peut se diviser en groupes qui ont tous les mêmes substitutions, en sorte que

 $G = H + TH + T'H + \dots$

Ces deux genres de décompositions ne coïncident pas ordinairement. Quand ils coïncident, la décomposition est dite propre.

Il est aisé de voir que, quand le groupe d'une équation n'est susceptible d'aucune décomposition propre, on aura beau transformer cette équation, les groupes des équations transformées auront toujours le même nombre de permutations.

Au contraire, quand le groupe d'une équation est susceptible d'une décomposition propre, en sorte qu'il se partage en M groupes de N permutations, on pourra résoudre l'équation donnée au moven de deux équations : l'une aura un groupe de M permutations, l'autre un de N permutations.

Lors donc qu'on aura épuisé sur le groupe d'une équation tout ce qu'il y a de décompositions propres possibles sur ce groupe, on arrivera à des groupes qu'on pourra transformer, mais dont les permutations seront toujours en même nombre.

Si ces groupes ont chacun un nombre premier de permutations, l'équation sera soluble par radicaux; sinon, non.

 $H \subset G$ is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois' death

notion of a soluble group

main theorem of Galois theory

notion of a normal subgroup

notion of a simple group

Mathematicians were studying group theory for 60 years before they began studying *representations* of finite groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The first character table ever published. Here G is the alternating group on 4 letters, or equivalently the symmetries of the tetrahedron.

Frobenius, Über Gruppencharaktere, S'ber. Akad. Wiss. Berlin, 1896.

Now $G = S_5$, the symmetric group on 5 letters of order 120:

[1013]		29								
	-	X ⁽⁰⁾	X ⁽¹⁾	$\chi^{(2)}$	$\chi^{(3)}$	X ⁽⁴⁾	X ⁽⁵⁾	$\chi^{(6)}$	h _a	
	Xo	1	5	5	4	4	6	1	1	
	Xı	1	1	1	0	0	-2	1	15	
	χ_2	1	1	-1	2	-2	0	-1	10	
	X3	1	-1	-1	1	1	0	1	20	
	X4	1	-1	1	0	0	0	-1	30	
	X5	1	0	0	-1	-1	1	1	24	
	X6	1	1	-1	-1	1	0	-1	20	

Conway, Curtis, Norton, Parker, Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985.

$$M = F_1$$

																			1															
	BR/10/0410/0604		THURN S	marrest	Notes and	n. ¹	d north	and mi	und .	d and	and a	d.m		200	10 160	ni -d	1.1	1										1.1.1.1	1.1.1	24.4	: : :	111	111	
	A C BUILDER AND A DECEMBER OF	NACE PROPERTY.	International	interest in the	TTylecoller 10.2.0	11110-00	el macrael p	2000 2000		1 1	0010 100			1	POLE DAVA	1 1	2000 6011	99015	- i -	1000.00	-752 pr		12-1	the state	i ung co	100	1000 100 10	and the state	10000	1 4 5	성격한	1200	10 10 10 10 10 10 10	1 10 10
"				- 0	- R.	÷			1.1		÷.				11			÷.,			6.5	4.4	12 14	2.5	3 0	12.0 4	5000	10.0	214.10	78.76.16	10 14 10 1	10.00.00		10.14
2		101	200	712	51	26 0			11	1 23	28	2 5			1.0	3.5	÷.,			2.8.6				÷ .		4.1.4	0.14	25.2	1.1.1	141	1.11	111	5.2.4	
	PONDEN INVESTIGATION	PROVE OF THE PROVE	LICK MARK	MALE INVESTIGATION	-011	-240 M	N 74 N 244	-00 1 AD 19	2411	*0 1000 70 ED*	500 1000	20 A		104	-15 AP	2 1	1.1	111			N 19	1.2	12 8		÷ 1	154	3.1.1	210	1 1 1	17 -6 18	1.2.1	893	- 2.4	
2	HINGS AND	592105	-0595	201102	1946	-PV PO	41 -00	53 -6	8752	11 2214	eer -	* *	11.1	1071	-6 10			1.0			100 100	- 10	1.2	10.10		14		24.6	10.2	1.0.16	1.44		14.4	
	STATING MILTON	TLO-MOD	-993.00	10/10/	-4713	115 140	41 - 10	-03 - 28	9447.4	94 12495	1000 -		5.3	1219	75 186				1	- 10 - 10	10 N	201	1.1	N 42		0.000	11.00	1010	140	41-12 17	1.1.1	111		- 4 0 6 8 0
÷.	UNACCOURTS	pressure pressure	1210005	240044	10555	24 142	21 2000	-07 -02	1975	DN 2043	0715	N 17		1415	1 119	18 20				1 10 V	No. In	2.25	-1.10	1.0 10	12.13	× 44 × 4		10 1 11	14.2	11.11	1 1 4		223	1.1.1
2	WEELPOODWAJ	Micates	1004081	0000703	-003 3	THE THY YOU INTO	0 200	30 10	100	14 130N 15 110N	1953	84 21 EH ES	1 4 10	3#54 6704	19 MB	21 43		1 1 1 1	1	h- 263 - 24	10.00	1.10	14 16	-14 -1	8.4	49.1	111	-1.101	1.4.2	4.7.4	1 0 2	÷ • •		1.3.4
2	CANADAMITS (1)	SU/Anote	-1256/95	*******	tere 1	100 UN2		-004 68	1990.0	1401	4141 -1	10 81	-4 10	4/11	2 100	40 20		1.1		4-100 10	-201 -210	2.2	5 18	20 10	-43 20	1.00	2.12	0.1.00			-1 -10 1	140		
**	ET+IP4POOLN'N	200806-04	*18206	TEADETCH	-146 -0	101 1100	4 99	NO. 1	2010	6 60	denia.	94 - 09		1953	1 100	2.2		1.12		N 100 10	340 MS		1.5	5	10 14	100		010		-1.3 -1.8 -1		* ***	111	121
	Beneverality	-1504604	101003	10000	2000 -11	07 -0	0 -080	1046 1073 1081 1083		0 193	- 2.3	74 100	-040 100	- 1		3 -0	-10 1	1 12	1		1.1	1.1	1.1	3 43	10.10	0.10	1.12.15	1.02 3		111	1.0.0		111	111
2	200700000000	THEORY OF	12902384	26251145	-1757 3	101 1018	18 Jungine 19 MODIS	-1270 125	202421 -	04 10411 04 10200	30.00 -0	107 -008 101 -008	20 10	1954	2 100	10 0		1 2 2	1	14 1010 -10	584 +134	-0.38	4.19	22	-0.4	1-0.01		1 2 10	1.1	2010.00	0.00	4.1.1	44.4	1.2.4
2	NORMATORNA DA	N. S. SHARES AND	757504	3mingeria	-2016 10	100 100	N 1014	-4214 1258	NPTS 1	DI NORTH	79000 71	10 124	90 x38	1,899	0 31B	10.07		-19.54		*- 134 - je	-80 25	10.10		11 - 14	4.5	5 10 10		-	-14 F.		2.22	141		.33
-	ADRONAL ONLY AND	www.chespin	1000	14060411	8140 - 74	NIT BUDY	13 -100044	101 101	1912400	91 NIS	101104 20	10 -200	84 -44	1201	4.500	-341 -244		1 2 2		1.99	945 35 (MB 16	24		10 0	2 10	0.1410	0.00	0.0.0	1.0	-41 -5 -1	1 5 5	111	5.5.3	111
	BID-BID-CH-CARD	TEMPERATING INC.	-20000744 3 (10)4846	2406242513	-0850 K	101 Auron	1 1000 H	-1444 -0008	12 MOT -6	96 211461 24 245481	IDents M	18 240 R1 84	-18 -18	24214	0.400	1244 - 075		с ны. т -м.н.	i.	N- 1235 - 24 N- 136 - 18	120 -471	10 10 Alt 10	N 16	H 10	115 M	91-19-19 (1)-19-19	0.00	1 1 11 11 11 11	19 -32 6 311 - 3	-11 11 -1	1.00.00		10.421 8	111
÷.	Za(A)ealartaivear	-Bur apparent	-2017175	100220000	404 2	1921 2011 101 184	16455 N	1345 3415 1805 1860	1058541 1	00 10130 01 5	1001 -00	1 107	-ID -011	10018	-111 (241	-15 25		1 10 10			1406 -200 -	10 20	2.23	10	-1.1	11.11	12 4 19		112.35	05.72.43			1-11-1	1.1.4
	MOLASHINGTONIAN MANUARANANAN	40043344665	-755244515	a constant	* *	101 104 A 1004	r ternes	28.00 1017	-0019 4	04 K			6 108	ю	-346 -47	-14 -10	1.11	1 40 1-				5 1		1.1	1.5	535	1.1.1	11.5	÷ .	111	0.44	111	111	
**	BANK SCREET BOOK	214127100740	THE PART	2010011104	-11128 -3	10.01	N NYP	open real	105456 -2		PORTA DE	NY -411	-17 10	1954	-10 104	- 10				No. 108 - 14 3	100 80			NG 400- NG 4780-		2 1 1 2	10.00	1 0 10 Lay	, 101 426 - 4 10 420	14 5 8	2.2.2	111	223	
	0549406151140426	TROBUSION	-isectrical contraction of the second	Noteral and	100N6 -F	200 MINUS	6 -MOV	455 -1125	200001	 VINT VINT VINT 	24695 13	171 1494 141 14195	15 20	25524	1 201	JHK 22	1 10 1	6 21 44		44 20 21 41 45 40 10 42	NR 2015	: :	2 - 10	05 245	10.00	0+04-49 11-08-11	-0.75	-14 0 -108			1 - 73 - 6	10.0.4	0.5.3	12.1
2	259410615600005	20840271000	TANDADON CONTRACTOR	MULTIPLES AND	-1100-0 H	421 20245 414 20266	1 NUMBER - 1 1048107	4347 -1886	Matter 2	10 -2-000 10 55600	0000 NC	21 20	11 - 22	204	6 165	1411 -010		5 5 2		10.000 -00.00	00 20	11 14 1		a 10	10.1	10.72.00	1.0.4	1.1.1		11 -0 -1	123	0 4 1	24.3	1.42.3
2	NUTRIBULATIONS AND	7-Denalgroup	COMISSION OF	personal and	360005 -3	015 alieng	4 6,9004		Falsen 5	94 494330	2014 30	** 21	1985 \$1	392	763 -974	227 60				** 201 -11 2	10 14	NE -210 3	2.21	100 246	59. 45	24 M 23	10.00	1 1 10	144	20.00	3	1.10	÷ i i	171
	PT2PM EXITS NO 45400	VARIABILIZATIO	5'007+9000	7500751065	-728180 W	NO 2840	NO VORTAGE	12111 - 1944	Aliante .	 	10100 47	10 1400	37 -10	100	-00 748	216 1	1 10 1	6 (III) 8 6 A	- i -	1. J. 10 11	100 800	12	·	EN 104	25 10	28-08-02 14-00-08	0.00.0	11.6	18.45 1.25.45	11 1 -1	222	5 8 49	143	111
÷.	1004107007070707070	POLICIAL DATE	CHARTIN	ABM DOLLARD	NEMA -0	100 100000 1026 107917	n new	rank saca	101101 4	4 JANNESS	20324 -11	97	1048 - 1986 1056 - 1056	2600	0 154	-041 80		5 - 12 M		1	118 -010 118 -010 -	4 0 19 - 19 1	1.4% 1.22.	N 25	-10 -4 10 -20	11-04 4	10.10	N -11 -45		15 5 4	1.00.2		3 - 5 - 6	111
	TERRORIMITATION	100007900004	Spream pro-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	-010071 -100	1014 20181. 1014 20181.	1	-117 -100m	-100 5	41 MONT	200 10	11 -010	NF 111	- 3	0.01	-044 -475	2 404 10 7 404 10	A 111 Fr		10 AL 10 1	(F) - 45 -	0.01		ii - a	19 9	6 35 441	0.01	111	19.1	2.2.3	-11 - A - A	u	- 1 -	14.3
	DEPENDENCE CHARACTER	-Steelawa	2514267364	-261300736	120000 100	1016 1020 M	: :	1.1	-2000 11				1192	- 1	1.1				1	14 JA -14	18 129 -		а.	4.4	1.0	1 2 1		111		201	1.2.5	111	323	. 1 .
	2010/22/04/14/22/14	20000007 70010	-07309525	1004112718	-201626 10	104 30(28		- 1 - 1	-1905 II	en 20020	0.01	194 - 196 194 - 196	209 -610	7000		- 1		2 6 10		10 Ja - 10	56 103 - 168 - 348	14)- 15 -18 -	4 11 - 14 14	128 -1300 Mil -640	0 10A	111	111	11.1	1.1.1	N 22 J	1 1 1	1.1.1	1.1.1	
10.1	HOURSAY KINCHURS	192500 provides	NORBELLING		-250941	4 250	12 -18456 12 -18456	YEA - MHO	2001 10	10 B	4946	6 8647 0 Mat	129 4	- 1	* **	4 1	1 - 11 - 17 1 - 11 - 11	6 -410 ha			144 481	N - 201 -	N 25	1.2	1.1	1.25.42	1.4	1.9 1	101	6.00 1	4 .4.41	83 B	111	1.5.5
	MERVICIDARY CTVC200 MERVICE REALIZED	1000400007-00	-041051530	-utilities	HIGHE 21	10 HU	N - 2	100 000	59-039 -0	1 ALES	201224 211	10 X 10 10	-000 Will	12.00	1.1				1	No 231 + -1	100 100	10.10	0.48	1.1	1.26	111		11.0	19.1	20.10.0	0.5.4	2.2.2	4.4.4	
12.1	HET THE PRODUCT (DLD	PERSPANSIVE PROPERTY AND	10000000	-26500-855	montai ang	110 115	s -recette -	1708 x228	-A2.08 +N	0 20948	\$166 1PG	ni .446	1850 - 843	- 1925	1.3	-00 104	- 141 - 1	6 -101 hz	1	Au 199 111	5 6	8 6	N -	v 14	-774 -20		10.11	4 5 6			122	112	***	
	1414362012113401418	011011111100	-101041234	WIN KONK	THEOR NY	NUR NORTH			66240 -	10 119140	1001 -010	10 100		1214	100 0	-				4204 -001 -00	100 900 100 -104	e	о <i>м</i> н с.	2942 - 1940 - 162 - 1940 -	0 TU	1.00	1111	-14 -3 -145 -34 46 MR	1.1.2	10 0 4	111	2 4 12	1-12	
	TREESON CONTRACTOR	KUIT NIKOWA	1240/004	+CODPUTERS.	Sincing 1945	IVE HEALY	4 19950 -	THE GUL	10000 -2	6 11601 12 16074	10542 104 (0.6)14	195 1948 145 14674	-2512 854 D4 -80	**0	0.0764	-10 101		6 -18 m. 9 - 19 m.		n. 1997 199 9 Pr 1998 193 7	104 (96) - 101 (91) -	194 - 54 - 1 195 - 129 - 1	H +	NE -010	-171 -10	11-10-10	20 20 10	-N 23 3		altering of	0.4.1		1.0	11.1
10.1	149025411401043425	PROCEEDINGS PROCEEDING	-161 10/04/25 -161 10/05/25	-00274620	-40110 -014	10 1462	5 -0100 1	1910 June 1		1 -1110	-0424	(1) -111	2010 111	-10	885 F16	10.00	1.00	- 15 O	i.	101 10 100	1.1	1.1	1.1	N 65	-in sa	8.65.11	-15 -15 10	11.0	1.4.2		1.1.1	1.1.4	1.1.4	19.3
2.1	THE GROWING CONTRACTOR	-TIPICAL UNABLE	Materials	DOUBLESS .	TRADUCT 11	UN JANE	S LANCES I	this and	2	a 19065		11	-1820 -185	- 3	, (4)	-	5 10 F			** +*30 +27		11	11	N	1.0	4 3 6	4 + 12 N	1.1			1.6.1.	1.14	115	-11
- 6- 6	2010/06/07/07/07/07/07	Invitescieder		2000020075	-11 74842	1 176134	1 20404			- 19090	19424 144	11 11/1	-1706 6	200	210-2386	14 1	1.16.0	1.10		** -120 -EX ** -0 0 (4		i de		10 -010 01 -014	-111 T	NG 15 24	-14-14-10	11.1		1.0.1	111	111	111	:11
	4202109120112984-00038	-624090000000	-190303200	202360400	ATTVE IN	D-0 -D189		1102 0	2 -10	10 11 MICL	THE R	124 - 24685 126 - 26694	-144 833	1991	20 111				1	A. 1925 52 -40 An 192 11	0 4N	2 I 2 10-1	a	NG 1485-	11.12	1 1 1 1	0.0.0	-21 2 -02	1.0	A-0.1	2 2 4	111	1.01.0	111
- 213	POSTOPPON STATEMENT RESULTING REPARTS (CO.	-EPG00750M00 13668080/P1434	-Teltorroot	SCHOOL ST	-1082000 110	00 -1000	e	1102 ÷	20173 17	to assess	11440 20	101 - 10144 101 - 10144	-144 612	- 1206	101 0	1.1	1.1	1 12		No. 10 11		5.00	1.11	10.10	1.1	9 E I	15 10 0	4 8 als	1.4		n + +	2 1 0	144	111
2.3	Enicosts/pepice to US	TORPH ARE	H Chandone	0520-9814	N4(27)	a pastra	in Provident	901 -1000	876.F2 U	73 +6417N	204445 400	-94	-491 - 4	-858	8.497	201 -00	- 10	u -11 -	1	A -10 1-0	19 20 1	10 10 vi	1.111	ar 21		44.10 et	0.00	0 1 2	14-	-74 -12 - A	114	1.4.2	-1 -1 -1	. 1.5
	N NGCHARGE AND	ranseemen	TREEATLES	40-06730411	-0114112 100	10 1000	-121619	exa - 0	3798200 -42		Torvie M	44 4434	-15 -550	-12/04	28 0			1 10.0	1	N 455 10 10		i i i	1	12 MA -	10 10	212	0.15.45	2 - 2		223	2 4 4	112	100	. 12
- 2 - 2	retour perseneet rung	STREPHOLOGICAL STREET	11614/19120	517/2040404	1 10	On Henry	a 101/2	Shine Bolts	#10005 TS	IN 1017046	0 10	112 (444) 113 (114)	1440	- 19	1-010	-me 1		0 3 W 8 3 W	1	No. 21 10 10	14 J240 F	14 - 191 - 3 10 - 100 - 3	1.15	N -74 -	10 April 10	10 - 11 - 10 10 - 11 - 10	-11-12-14	111	111	AL 1 1	111	* *** * * *	111	111
- 2 - 2	PROMITISM CONTRACTOR	12/25/2010/11/2010	-T11100/010	2010/07/21471	141100 -004	100 90174C1	a tribue	\$700 -20(8) ALLS -0170	BUCCS of	Notes a	100403 -020	A	205 200	-7411	8 -2094	1010 100	1 246 2	A 181-1	1	* .wx -10 -00	n -m	1.1.1	0.10.4	21 23	121 -14	9-18-16	35 (8 - 8	45.41		19.00	1.16.6		16 6 42	14.4
2.1	J THERE WAS ARRESTED AND	- WEWGOLANERS	* 1052055N	10130-103	-855.050 1100		6 19905 -	10.0 10.00	1045 -3	n kirin	-10141 374	41 -147	-485 2002		105 1764	-175 -10		0 -10	1	No. 400 101 103	8 48 40	5 - 5 - 6	1.01	5 - 54 5 - 44	-5 K-	14 14 11	-0-0-0	11.1	1.1.1	241.2	0 X N	112		47
- 21	KONDAGE (EVERYORIES	CONFERENCES	-9526049103	-moterna		 19,000 19,000 	5 -204(65	1985 19915	5	2 1945		15 1	1 100	-1400	NU 10	-74 63		C 181-	1			: ::		10 1425 10 16 1	NAS 125 NAS 24	的间的	111	15 4 5	1.0	111	111	2 8 8	111	.11
	6800580090585585586	*Consection	142,040,000	WINKING		P LICLUS	9 -000000 g	1999 - 1992	-3690 -10	1 +600%	+ 20	14 d	301 44	-1404	1.12	-00 07	5 NG 6	7 1881	1	10 10 10 10 10 10 10 10 10	1			· · ·			6 8 0	11.64	100 6	111	- 1.4	111	111	111
	TONICALLY CONCERNINGS TONICALLY CONCERNINGS	-208804/965 -208804/965	-10098075465	HIGHLAN HIGHLAN	100505-1010	175 -176	a NOTA-	DECK PTERM	- 1	* 2025 * 2025	NOTE D	nt min	#101 - 100	-0975	210 95	5 17	22	n min		1. 221-011	111	1.11	11	n n		0.05.91	-0 -11 -10	0.1.40	. 6. 6	2.4.4	222	2 6 15	0.0.0	-3 î
2	0001+75+04222737-000	WINNERSON ACCESS	10000000	VERSITI AND IN COLUMN	-19592 -194	INA STORES	e -rasee -	-1100 -120	1000770 0	to stream	4419 20	an aire	100 -356	- 793	9 - 108	-100 12	• • w •	0.000		** #5.4/1 ** 1.08.00	5 35 2			8 - 10	25 194	2.4.3	-01-11-15 -01-05	112	21.0		2 4 4 1 4 4	1.1.0	1 4 4	21
	reenaded yearspacement	1110101202020	-01444.0294		1 10	ON INVITE	a -procesa	1000 -5716	2920498	1 -1608-	6.00	•12 1	0 110	- 10004	1.00	-196 -10	, <u>10-</u>	N 185-	÷	10 E E H	8 20 -12 8 -00 -15	0 IN 4	- 10.10		440 - 12 - 204 - 12	6 2 2 6 2 2	1 1 1	13 6 110 28-09 140	121	8 1 1 0 1 1	1 1 5	131	111	11
- 2 - 2	PROPERTY AND A CONTRACTOR	TERMINAL PROPERTY AND INCOME.	-20043946966	10404217010	197553 40	100 EA1108	6 PERSON - 6	NAME OF BRIDE	101101	* 255288 00 -0002	LANKIN LAN	631 1976 GAL 1976	-185 -000 368 1881	-1212	14 + 100	1041 82	• 24 1 • 462 4	N Non G 1000		+ + + 10 20	2 10	: .: :	1.1	N 40	10 10		-10 19 1	11.1	-11 11	99 I I	2.2.2	112	0.11	1.1
	INDERFOR POSSION INCOME.		-10084240FH	-101711 Pro	DISTURB LINE	218			179100 0		-104.04	1 11	4130 - 1949									88		- 24 -	10	50	21.000	ye			17 IS 18 1		-1-1-1	

TO

However around 1900 other mathematicians took some convincing at to the utility of representation theory...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Cayley's dictum that "a group is defined by means of the laws of combination of its symbols" would imply that, in dealing purely with the theory of groups, no more concrete mode of representation should be used than is absolutely necessary. It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

- Burnside, *Theory of groups of finite order*, 1897. (One year after Frobenius' definition of the character.)

PREFACE TO THE SECOND EDITION

VERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is accordingly in the present edition a large amount of new matter.

Burnside, *Theory of groups of finite order*, Second edition, 1911.
 (15 years after Frobenius' definition of the character table.)

Representation theory is useful because symmetry is everywhere and linear algebra is powerful!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Categories can have symmetry too!

Categories can have symmetry too!

Caution: What "linear" means is more subtle.

Usually it means to study categories in which one has operations like direct sums, limits and colimits, kernels ...

(Using these operations one can try to "categorify linear algebra" by taking sums, cones etc. If we are lucky Ben Elias will have more to say about this.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example: Given a finite group G its " \mathbb{C} -linear shadow" is the character table (essentially by semi-simplicity).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Given a finite group G its " \mathbb{C} -linear shadow" is the character table (essentially by semi-simplicity).

The subtle homological algebra of kG if kG is not semi-simple means that Rep kG or $D^b(\text{Rep }kG)$ is better thought of as its *k*-linear shadow.

Example: Given a finite group G its " \mathbb{C} -linear shadow" is the character table (essentially by semi-simplicity).

The subtle homological algebra of kG if kG is not semi-simple means that Rep kG or $D^b(\text{Rep }kG)$ is better thought of as its *k*-linear shadow.

Amusing: Under this analogy difficult conjectures about derived equivalence (e.g. Broué conjecture) are higher categorical versions of questions like "can two groups have the same character table"?

What are the basic linear symmetries?

What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke algebras, . . .

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing.

We have both a general theory and a rich base of examples.)

What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke algebras, . . .

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing. We have both a general theory and a rich base of examples.)

In higher representation theory we ask:

What are the basic categorical symmetries?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke algebras, . . .

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing. We have both a general theory and a rich base of examples.)

In higher representation theory we ask:

What are the basic categorical symmetries?

I would suggest that we don't know the answer to this question. We are witnessing the birth of a theory. We know some examples which are both intrinsically beautiful and powerful, but are far from a general theory.

R. Rouquier, 2-Kac-Moody algebras, 2008

Over the past ten years, we have advocated the idea that there should exist monoidal categories (or 2-categories) with an interesting "representation theory": we propose to call "2-representation theory" this higher version of representation theory and to call "2-algebras" those "interesting" monoidal additive categories. The difficulty in pinning down what is a 2-algebra (or a Hopf version) should be compared with the difficulty in defining precisely the meaning of quantum groups (or quantum algebras).

First steps in higher representation theory.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

<□ > < @ > < E > < E > E のQ @

In representation theory we study homomorphisms $A \rightarrow \text{End}(V)$ for A an algebra and ask what they might tell us about V.

In representation theory we study homomorphisms $A \rightarrow \text{End}(V)$ for A an algebra and ask what they might tell us about V.

Given an (additive) category C its symmetries are End(C) (all (additive) endofunctors of C).

In representation theory we study homomorphisms $A \rightarrow \text{End}(V)$ for A an algebra and ask what they might tell us about V.

Given an (additive) category C its symmetries are End(C) (all (additive) endofunctors of C).

In higher representation theory we study homomorphisms $\mathcal{A} \to \operatorname{End}(V)$ for \mathcal{A} a monoidal category and ask what such homomorphisms might tell us about \mathcal{C} .

Thus algebras are replaced by (additive or sometimes abelian) tensor categories.

Recall: A is an additive tensor category if we have a bifunctor of additive categories:

 $(M_1, M_2) \mapsto M_1 \otimes M_2$

together with a unit 1, associator, ...

Examples: Vect_k, Rep G, G-graded vector spaces, End(C) (endofunctors of an additive category), ...

A $\mathcal A$ -module is an additive category $\mathcal M$ together with a \otimes -functor

 $\mathcal{A} \to \mathsf{Fun}(\mathcal{M},\mathcal{M}).$

A $\mathcal A$ -module is an additive category $\mathcal M$ together with a \otimes -functor

 $\mathcal{A} \to \mathsf{Fun}(\mathcal{M}, \mathcal{M}).$

What exactly this means can take a little getting used to.

As in classical representation theory it is often more useful to think about an "action" of \mathcal{A} on \mathcal{M} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(1)
$$(A, M) \longrightarrow A \cdot M$$
 "objects act on objects"
(often visible on Grothendieck group)

- * ロ > * 個 > * 画 > * 画 > 、 画 ・ 少々で

A first example:

$$\mathcal{A} := \operatorname{\mathsf{Rep}} SU_2 \left(= \operatorname{\mathsf{Rep}}_{fd} \mathfrak{sl}_2(\mathbb{C}) \right)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A first example:

$$\mathcal{A} := \operatorname{\mathsf{Rep}} \mathcal{SU}_2 \left(= \operatorname{\mathsf{Rep}}_{\mathit{fd}} \mathfrak{sl}_2(\mathbb{C}) \right)$$

 ${\mathcal A}$ is generated under sums and summands by $\mathrm{nat}:=\mathbb{C}^2.$

A first example:

$$\mathcal{A} := \mathsf{Rep}\,\mathcal{SU}_2\,(=\,\mathsf{Rep}_{\mathit{fd}}\,\mathfrak{sl}_2(\mathbb{C}))$$

 \mathcal{A} is generated under sums and summands by $nat := \mathbb{C}^2$.

An \mathcal{A} -module is a recipe $M \mapsto \operatorname{nat} \cdot M$ and a host of maps $\operatorname{Hom}_{\mathcal{A}}(\operatorname{nat}^{\otimes m}, \operatorname{nat}^{\otimes n}) \to \operatorname{Hom}_{\mathcal{M}}(\operatorname{nat}^{\otimes m} \cdot M, \operatorname{nat}^{\otimes n} \cdot M)$

satisfying an even larger host of identities which I will let you contemplate.

Let \mathcal{M} be an $\mathcal{A} = \operatorname{Rep} SU_2$ -module which is

(ロ)、(型)、(E)、(E)、 E) の(の)

- 1. abelian and semi-simple,
- 2. indecomposable as an \mathcal{A} -module.
- 1. abelian and semi-simple,
- 2. indecomposable as an \mathcal{A} -module.

Examples:

 $\mathcal{M} := \mathsf{Vect}_{\mathbb{C}} \text{ with } V \cdot M := \mathsf{For}(V) \otimes M$ ("trivial rep")

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. abelian and semi-simple,
- 2. indecomposable as an A-module.

Examples:

 $\mathcal{M} := \operatorname{Vect}_{\mathbb{C}}$ with $V \cdot M := \operatorname{For}(V) \otimes M$ ("trivial rep")

 $\mathcal{M} := \operatorname{Rep} SU_2$ with $V \cdot M := V \otimes M$ ("regular rep")

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. abelian and semi-simple,
- 2. indecomposable as an \mathcal{A} -module.

Examples:

 $\mathcal{M} := \operatorname{Vect}_{\mathbb{C}} \text{ with } V \cdot M := \operatorname{For}(V) \otimes M (\text{"trivial rep"})$ $\mathcal{M} := \operatorname{Rep} SU_2 \text{ with } V \cdot M := V \otimes M (\text{"regular rep"})$ $\mathcal{M} := \operatorname{Rep} S^1 \text{ with } V \cdot M := (\operatorname{Res}_{SU_b}^{S^1} V) \otimes M.$

- 1. abelian and semi-simple,
- 2. indecomposable as an A-module.

Examples:

 $\mathcal{M} := \operatorname{Vect}_{\mathbb{C}} \text{ with } V \cdot M := \operatorname{For}(V) \otimes M (\text{"trivial rep"})$ $\mathcal{M} := \operatorname{Rep} SU_2 \text{ with } V \cdot M := V \otimes M (\text{"regular rep"})$ $\mathcal{M} := \operatorname{Rep} S^1 \text{ with } V \cdot M := (\operatorname{Res}_{SU_2}^{S^1} V) \otimes M.$ $\mathcal{M} := \operatorname{Rep} \Gamma (\Gamma \subset SU_2 \text{ finite or } N_{SU_2}(S^1)) \text{ with }$ $V \cdot M := (\operatorname{Res}_{SU_2}^{\Gamma} V) \otimes M.$

Examples:

$$\mathcal{M} := \operatorname{Vect}_{\mathbb{C}} \text{ with } V \cdot M := \operatorname{For}(V) \otimes M (\text{"trivial rep"})$$
$$\mathcal{M} := \operatorname{Rep} SU_2 \text{ with } V \cdot M := V \otimes M (\text{"regular rep"})$$
$$\mathcal{M} := \operatorname{Rep} S^1 \text{ with } V \cdot M := (\operatorname{Res}_{SU_2}^{S^1} V) \otimes M.$$
$$\mathcal{M} := \operatorname{Rep} \Gamma (\Gamma \subset SU_2 \text{ finite or } N_{SU_2}(S^1)) \text{ with }$$
$$V \cdot M := (\operatorname{Res}_{SU_2}^{\Gamma} V) \otimes M.$$

Examples:

$$\mathcal{M} := \mathsf{Vect}_{\mathbb{C}} \text{ with } V \cdot M := \mathsf{For}(V) \otimes M$$
 ("trivial rep")

 $\mathcal{M} := \operatorname{\mathsf{Rep}} SU_2$ with $V \cdot M := V \otimes M$ ("regular rep")

$$\mathcal{M} := \operatorname{\mathsf{Rep}} S^1$$
 with $V \cdot M := (\operatorname{\mathsf{Res}}_{SU_2}^{S^1} V) \otimes M$

$$\mathcal{M} := \operatorname{\mathsf{Rep}} \Gamma \left(\Gamma \subset SU_2 \text{ finite or } N_{SU_2}(S^1) \right) \text{ with } \\ V \cdot M := \left(\operatorname{\mathsf{Res}}_{SU_2}^{\Gamma} V \right) \otimes M.$$

Theorem

(Classification of representations of $\operatorname{Rep} SU_2$.) These are all.

Let
$$\{l_i\}$$
 denote the simple objects in \mathcal{M} .
Praw an edge $L_i \rightarrow L_j$ if $L_j \stackrel{\text{eff}}{=} nat \cdot L_j$.
Exercise: nat self-dual $\Rightarrow (L_i \rightarrow L_j \stackrel{\text{eff}}{=} L_j \rightarrow L_i)$.
Vect C Rep SU₂ Rep BI
 $C \cdot 0 - 1 - 2 - 3 - 4 - \cdots$
Rep S¹ $(C[X,X])^{S_2} \subset C[X,X'])$
 $Rep S^{1} (C[X,X])^{S_2} \subset C[X,X']$
 $Rep An$
 $Rep An$

. . .

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Remarkably, the action of Rep SU_2 on the Grothendieck group of \mathcal{M} already determines the structure of \mathcal{M} as an Rep SU_2 -module!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarkably, the action of Rep SU_2 on the Grothendieck group of \mathcal{M} already determines the structure of \mathcal{M} as an Rep SU_2 -module!

This is an example of "rigidity" in higher representation theory.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An example of higher representation theory (joint with Simon Riche).

We want to apply these ideas to the modular (i.e. characteristic p) representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never know a complete and satisfactory answer.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some motivation from characteristic 0:

Recall the famous Kazhdan-Lusztig conjecture (1979):

$$\mathsf{ch}(L_w) = \sum_{y \in W} (1)^{\ell(w) - \ell(y)} P_{y,w}(1) \mathsf{ch}(M_y)$$

(Here L_w (resp. M_y) is a simple highest weight module (resp. Verma module) for a complex semi-simple Lie algebra, and $P_{y,w}$ is a "Kazhdan-Lusztig" polynomial.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Kazhdan-Lusztig conjecture has 2 distinct proofs:

 Geometric: Apply the localization theorem for g-modules to pass to differential operators (*D*-modules) on the flag variety, then pass through the Riemann-Hilbert correspondence to land in perverse sheaves, and using some deep geometric tools (e.g. proof of Weil conjectures) complete the proof (Kazhdan-Lusztig, Beilinson-Bernstein, Brylinsky-Kashiwara 1980s). This proof uses every trick in the book!

The Kazhdan-Lusztig conjecture has 2 distinct proofs:

- Geometric: Apply the localization theorem for g-modules to pass to differential operators (*D*-modules) on the flag variety, then pass through the Riemann-Hilbert correspondence to land in perverse sheaves, and using some deep geometric tools (e.g. proof of Weil conjectures) complete the proof (Kazhdan-Lusztig, Beilinson-Bernstein, Brylinsky-Kashiwara 1980s). This proof uses every trick in the book!
- Categorical: Show that translation functors give an action of "Soergel bimodules" on category O. Then the Kazhdan-Lusztig conjecture follows from the calculation of the character of indecomposable Soergel bimodules (Soergel 1990, Elias-W 2012). This proof is purely algebraic.

We want to apply the *second* approach to the representation theory of reductive algebraic groups.

The first approach has also seen recent progress (Bezrukavnikov-Mirkovic-Rumynin) however it seems much more

likely at this stage that the second approach will yield computable character formulas.

For the rest of the talk fix a field k and a connected reductive group G like GL_n (where we will state a theorem later) of Sp_4 (where we can draw pictures).

For the rest of the talk fix a field k and a connected reductive group G like GL_n (where we will state a theorem later) of Sp_4 (where we can draw pictures).

If k is of characteristic 0 then Rep G looks "just like representations of a compact Lie group". In positive characteristic one still has a classification of simple modules via highest weight, character theory etc. However the simple modules are usually much smaller than in characteristic zero.

▲ 臣 ▶ 臣 • • • • •

. .

 $\operatorname{Rep}_0 \stackrel{\oplus}{\subset} \operatorname{Rep} G \text{ the principal block.}$ $\operatorname{Rep}_0 \subset \operatorname{Rep} G \text{ depends on } p!$

The analogue of the Kazhdan-Lusztig conjecture in this setting is:

Lusztig's character formula (1979): If $x \cdot 0$ is "restricted" (all digits in fundamental weights less than p) then

$$ch(x \cdot_{\rho} 0) = \sum_{y} (-1)^{\ell(y) - \ell(x)} P_{w_0 y, w_0 x}(1) ch(\Delta(y \cdot_{\rho} 0)).$$

For non-trivial reasons this gives a character formula for all simple modules.

1. 1979: Lusztig conjecture this formula to hold for $p \ge 2h - 2$ (h =Coxeter number). Later Kato suggested that $p \ge h$ is reasonable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 1. 1979: Lusztig conjecture this formula to hold for $p \ge 2h 2$ (h =Coxeter number). Later Kato suggested that $p \ge h$ is reasonable.
- 1994: Proved to hold for large p without an explicit bound by Andersen-Janzten-Soergel, Kashiwara-Tanisaki, Lusztig, Kazhdan-Lusztig.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. 1979: Lusztig conjecture this formula to hold for $p \ge 2h 2$ (h =Coxeter number). Later Kato suggested that $p \ge h$ is reasonable.
- 1994: Proved to hold for large p without an explicit bound by Andersen-Janzten-Soergel, Kashiwara-Tanisaki, Lusztig, Kazhdan-Lusztig.
- 3. 2008: Fiebig gave a new proof for $p \gg 0$ as well as an explicit (enormous) bound (e.g. at least of the order of $p > n^{n^2}$ for SL_n)

- 1. 1979: Lusztig conjecture this formula to hold for $p \ge 2h 2$ (h =Coxeter number). Later Kato suggested that $p \ge h$ is reasonable.
- 1994: Proved to hold for large p without an explicit bound by Andersen-Janzten-Soergel, Kashiwara-Tanisaki, Lusztig, Kazhdan-Lusztig.
- 3. 2008: Fiebig gave a new proof for $p \gg 0$ as well as an explicit (enormous) bound (e.g. at least of the order of $p > n^{n^2}$ for SL_n)
- 4. 2013: Building on work of Soergel and joint work with Elias, He, Kontorovich and Mcnamara I showed that the Lusztig conjecture *does not hold* for many *p* which grow exponentially in *n*. (E.g. fails for $p = 470\ 858\ 183$ for SL_{100} .)

$\operatorname{Rep}_0 \stackrel{\oplus}{\subset} \operatorname{Rep} G$ the principal block.

On Rep_0 one has the action of *wall-crossing functors*:

"matrix coefficients of tensoring with objects in Rep G"

 $\operatorname{Rep}_0 \stackrel{\oplus}{\subset} \operatorname{Rep} G$ the principal block.

On Rep_0 one has the action of *wall-crossing functors*:

"matrix coefficients of tensoring with objects in Rep G"

Let W denote the affine Weyl group and $S = \{s_0, \ldots, s_n\}$ its simple reflections. For each $s \in S$ one has a wall-crossing functor Ξ_s . These generate the category of wall-crossing functors.

$$\langle \Xi_{s_0}, \Xi_{s_1}, \ldots, \Xi_{s_n} \rangle \subset \operatorname{Rep}_0$$

Main conjecture: This action of wall-crossing functors can be upgraded to an action of diagrammatic Soergel bimodules.

Main conjecture: This action of wall-crossing functors can be upgraded to an action of diagrammatic Soergel bimodules.

The category of diagrammatic Soergel bimodules is a fundamental monoidal category in representation theory.

It can be thought of as one of the promised objects which has interesting 2-representation theory.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ● の Q @

Theorem: Our conjecture holds for $G = GL_n$.

Theorem: Our conjecture holds for $G = GL_n$.

Consequences of the conjecture...

The category of diagrammatic Soergel bimodules is a natural home for the canonical basis and Kazhdan-Lusztig polynomials. In fact, because it is defined over \mathbb{Z} we get the *p*-canonical basis and *p*-Kazhdan-Lusztig polynomials for all *p*.

The category of diagrammatic Soergel bimodules is a natural home for the canonical basis and Kazhdan-Lusztig polynomials. In fact, because it is defined over \mathbb{Z} we get the *p*-canonical basis and *p*-Kazhdan-Lusztig polynomials for all *p*.

Theorem: Assume our conjecture or $G = GL_n$. Then there exist simple formulas for the irreducible (if p > 2h - 2) and tilting (if p > h) characters in terms of the *p*-canonical basis.

The category of diagrammatic Soergel bimodules is a natural home for the canonical basis and Kazhdan-Lusztig polynomials. In fact, because it is defined over \mathbb{Z} we get the *p*-canonical basis and *p*-Kazhdan-Lusztig polynomials for all *p*.

Theorem: Assume our conjecture or $G = GL_n$. Then there exist simple formulas for the irreducible (if p > 2h - 2) and tilting (if p > h) characters in terms of the *p*-canonical basis.

Thus the *p*-canonical basis controls precisely when Lusztig's conjecture holds, and tells us what happens when it fails.

Other consequences of our conjecture:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 A complete description of Rep₀ in terms of the Hecke category, existence of a ℤ-grading, etc.
Other consequences of our conjecture:

- A complete description of Rep₀ in terms of the Hecke category, existence of a ℤ-grading, etc.
- 2. All three main conjectures in this area (Lusztig conjecture, Andersen conjecture, James conjecture) are all controlled by the *p*-canonical basis. (Actually, the links to the James conjecture need some other conjectures. They should follow from work in progress by Elias-Losev.)

Thanks!

Slides:

people.mpim-bonn.mpg.de/geordie/Cordoba.pdf

Paper with Riche (all 136 pages!):

Tilting modules and the p-canonical basis,

http://arxiv.org/abs/1512.08296

・ロト・日本・モート モー うへぐ