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First steps in representation theory.



We owe the term group(e) to Galois (1832).



H Ă G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois’ death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Mathematicians were studying group theory for 60 years before
they began studying representations of finite groups.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the

tetrahedron.

Frobenius, Über Gruppencharaktere, S’ber. Akad. Wiss. Berlin, 1896.



Now G “ S5, the symmetric group on 5 letters of order 120:



Conway, Curtis, Norton, Parker, Wilson, Atlas of finite groups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985.



However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



– Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ definition of the character.)



– Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius’ definition of the character table.)



Representation theory is useful because symmetry is everywhere
and linear algebra is powerful!



Categories can have symmetry too!

Caution: What “linear” means is more subtle.

Usually it means to study categories in which one has operations like direct sums, limits and colimits, kernels . . .

(Using these operations one can try to “categorify linear algebra” by taking sums, cones etc. If we are lucky Ben

Elias will have more to say about this.)
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Example: Given a variety X one can think about CohpX q or
DbpCohX q as a linearisation of X .

Example: Given a finite group G its “C-linear shadow” is the
character table (essentially by semi-simplicity).

The subtle homological algebra of kG if kG is not semi-simple
means that Rep kG or DbpRep kG q is better thought of as its

k-linear shadow.

Amusing: Under this analogy difficult conjectures about derived equivalence (e.g. Broué conjecture) are higher

categorical versions of questions like “can two groups have the same character table”?
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In classical representation theory we ask:

What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke
algebras, . . .

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing.

We have both a general theory and a rich base of examples.)

In higher representation theory we ask:

What are the basic categorical symmetries?

I would suggest that we don’t know the answer to this question. We are

witnessing the birth of a theory. We know some examples which are both

intrinsically beautiful and powerful, but are far from a general theory.
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R. Rouquier, 2-Kac-Moody algebras, 2008

Over the past ten years, we have advocated the idea that there
should exist monoidal categories (or 2-categories) with an

interesting “representation theory”: we propose to call
“2-representation theory” this higher version of representation
theory and to call “2-algebras” those “interesting” monoidal
additive categories. The difficulty in pinning down what is a
2-algebra (or a Hopf version) should be compared with the

difficulty in defining precisely the meaning of quantum groups (or
quantum algebras).



First steps in higher representation theory.



Given a vector space V its symmetries are EndpV q.

In representation theory we study homomorphisms AÑ EndpV q
for A an algebra and ask what they might tell us about V .

Given an (additive) category C its symmetries are EndpCq (all
(additive) endofunctors of C).

In higher representation theory we study homomorphisms
AÑ EndpV q for A a monoidal category and ask what such

homomorphisms might tell us about C.
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Thus algebras are replaced by (additive or sometimes abelian)
tensor categories.

Recall: A is an additive tensor category if we have a bifunctor of
additive categories:

pM1,M2q ÞÑ M1 bM2

together with a unit 1, associator, . . .

Examples: Vectk , RepG , G -graded vector spaces, EndpCq
(endofunctors of an additive category), . . .



A A-module is an additive category M together with a b-functor

AÑ FunpM,Mq.

What exactly this means can take a little getting used to.

As in classical representation theory it is often more useful to think
about an “action” of A on M.
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A first example:

A :“ Rep SU2 p“ Repfd sl2pCqq

A is generated under sums and summands by nat :“ C2.

An A-module is a recipe M ÞÑ nat ¨M and a host of maps

HomApnat
bm,natbnq Ñ HomMpnat

bm ¨M, natbn ¨Mq

satisfying an even larger host of identities which I will let you
contemplate.
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Let M be an A “ Rep SU2-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.

Examples:

M :“ VectC with V ¨M :“ ForpV q bM (“trivial rep”)

M :“ RepSU2 with V ¨M :“ V bM (“regular rep”)

M :“ Rep S1 with V ¨M :“ pResS
1

SU2
V q bM.

M :“ Rep Γ (Γ Ă SU2 finite or NSU2pS
1q) with

V ¨M :“ pResΓ
SU2

V q bM.
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Remarkably, the action of Rep SU2 on the Grothendieck group of
M already determines the structure of M as an RepSU2-module!

This is an example of “rigidity” in higher representation theory.
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An example of higher representation theory
(joint with Simon Riche).



We want to apply these ideas to the modular (i.e. characteristic p)
representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never
know a complete and satisfactory answer.



Some motivation from characteristic 0:

Recall the famous Kazhdan-Lusztig conjecture (1979):

chpLw q “
ÿ

yPW

p1q`pwq´`pyqPy ,w p1qchpMy q

(Here Lw (resp. My ) is a simple highest weight module (resp. Verma

module) for a complex semi-simple Lie algebra, and Py ,w is a

“Kazhdan-Lusztig” polynomial.)



The Kazhdan-Lusztig conjecture has 2 distinct proofs:

1. Geometric: Apply the localization theorem for g-modules to
pass to differential operators (D-modules) on the flag variety,
then pass through the Riemann-Hilbert correspondence to
land in perverse sheaves, and using some deep geometric tools
(e.g. proof of Weil conjectures) complete the proof
(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinsky-Kashiwara
1980s). This proof uses every trick in the book!

2. Categorical: Show that translation functors give an action of
“Soergel bimodules” on category O. Then the
Kazhdan-Lusztig conjecture follows from the calculation of
the character of indecomposable Soergel bimodules (Soergel
1990, Elias-W 2012). This proof is purely algebraic.
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We want to apply the second approach to the representation
theory of reductive algebraic groups.

The first approach has also seen recent progress (Bezrukavnikov-Mirkovic-Rumynin) however it seems much more

likely at this stage that the second approach will yield computable character formulas.



For the rest of the talk fix a field k and a connected reductive
group G like GLn (where we will state a theorem later) of Sp4

(where we can draw pictures).

If k is of characteristic 0 then RepG looks “just like
representations of a compact Lie group”. In positive characteristic
one still has a classification of simple modules via highest weight,

character theory etc. However the simple modules are usually
much smaller than in characteristic zero.
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Rep0
‘
Ă RepG the principal block.

Rep0 Ă RepG depends on p!



The analogue of the Kazhdan-Lusztig conjecture in this setting is:

Lusztig’s character formula (1979): If x ¨ 0 is “restricted” (all digits
in fundamental weights less than p) then

chpx ¨p 0q “
ÿ

y

p´1q`pyq´`pxqPw0y ,w0xp1qchp∆py ¨p 0qq.

For non-trivial reasons this gives a character formula for all simple modules.



1. 1979: Lusztig conjecture this formula to hold for p ě 2h ´ 2
(h = Coxeter number). Later Kato suggested that p ě h is
reasonable.

2. 1994: Proved to hold for large p without an explicit bound by
Andersen-Janzten-Soergel, Kashiwara-Tanisaki, Lusztig,
Kazhdan-Lusztig.

3. 2008: Fiebig gave a new proof for p " 0 as well as an explicit
(enormous) bound (e.g. at least of the order of p ą nn

2
for

SLn)

4. 2013: Building on work of Soergel and joint work with Elias,
He, Kontorovich and Mcnamara I showed that the Lusztig
conjecture does not hold for many p which grow exponentially
in n. (E.g. fails for p “ 470 858 183 for SL100.)
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Rep0
‘
Ă RepG the principal block.

On Rep0 one has the action of wall-crossing functors:

“matrix coefficients of tensoring with objects in RepG”

Let W denote the affine Weyl group and S “ ts0, . . . , snu its
simple reflections. For each s P S one has a wall-crossing functor

Ξs . These generate the category of wall-crossing functors.

xΞs0 ,Ξs1 , . . . ,Ξsny ýRep0 .
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Main conjecture: This action of wall-crossing functors can be
upgraded to an action of diagrammatic Soergel bimodules.

The category of diagrammatic Soergel bimodules is a fundamental
monoidal category in representation theory.

It can be thought of as one of the promised objects which has
interesting 2-representation theory.
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The category of diagrammatic Soergel bimodules is a natural home
for the canonical basis and Kazhdan-Lusztig polynomials. In fact,

because it is defined over Z we get the p-canonical basis and
p-Kazhdan-Lusztig polynomials for all p.

Theorem: Assume our conjecture or G “ GLn. Then there exist
simple formulas for the irreducible (if p ą 2h ´ 2) and tilting (if

p ą h) characters in terms of the p-canonical basis.

Thus the p-canonical basis controls precisely when Lusztig’s
conjecture holds, and tells us what happens when it fails.
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Other consequences of our conjecture:

1. A complete description of Rep0 in terms of the Hecke
category, existence of a Z-grading, etc.

2. All three main conjectures in this area (Lusztig conjecture,
Andersen conjecture, James conjecture) are all controlled by
the p-canonical basis. (Actually, the links to the James
conjecture need some other conjectures. They should follow
from work in progress by Elias-Losev.)



Other consequences of our conjecture:

1. A complete description of Rep0 in terms of the Hecke
category, existence of a Z-grading, etc.

2. All three main conjectures in this area (Lusztig conjecture,
Andersen conjecture, James conjecture) are all controlled by
the p-canonical basis. (Actually, the links to the James
conjecture need some other conjectures. They should follow
from work in progress by Elias-Losev.)





Thanks!

Slides:

people.mpim-bonn.mpg.de/geordie/Cordoba.pdf

Paper with Riche (all 136 pages!):

Tilting modules and the p-canonical basis,

http://arxiv.org/abs/1512.08296


