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First steps in representation theory.



We owe the term group(e) to Galois (1832).




En d’autres termes, quand un groupe G en contient un autre H, le
groupe G peut se partager en groupes, que 'on obtient chacun en opérant
sur les permutations de H une méme substitution ; en sorte que

G=H+HS+HS +....

1. Terite la veille de la mort de l'auteur. (Insérée en 1832 dans la Revue ency-
clopédigue, numéro de septembre, page 568.) {J. LIOUVILLE.)
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Et aussi il peut se diviser en groupes qui ont tous les mémes substitutions,
en sorte que

G=H+TH+TH+....

Ces deux genres de décompositions ne coincident pas ordinairement.
Quand ils coincident, la décomposition est dite propre.

11 est aisé de voir que, quand le groupe d'une équation n’est susceptible
d’aucune décomposition propre, on aura beau transformer cette équation,
les groupes des équations transformées auront toujours le méme nombre
de permutations.

Au contraire, quand le groupe d’'une équation est susceptible d'une dé-
composition propre, en sorte qu'il se partage en M groupes de N permuta-
tions, on pourra résoudre I’équation donnée au moyen de deux équations :
T'une aura un groupe de M permutations, 'autre un de N permutations.

Lors done qu'on aura épuisé sur le groupe d’une équation tout ce qu'il
y a de décompositions propres possibles sur ce groupe, on arrivera & des
groupes qu'on pourra transformer, mais dont les permutations seront tou-
jours en méme nombre.

Si ces groupes ont chacun un nombre premier de permutations, I'équa-
tion sera soluble par radicaux ; sinon, non.

H < G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois' death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Mathematicians were studying group theory for 60 years before
they began studying representations of finite groups.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the
tetrahedron.
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Frobenius, Uber Gruppencharaktere, S'ber. Akad. Wiss. Berlin, 1896.



Now G = S5, the symmetric group on 5 letters of order 120:
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Conway, Curtis, Norton, Parker, Wilson, Atlas Of flnlte Zroups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985
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However around 1900 other mathematicians took some convincing
at to the utility of representation theory...



Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
Tt may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

— Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius' definition of the character.)



PREFACE TO THE SECOND EDITION

RY considerable advances in the theory of groups of

finite order bave been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is
accordingly in the present edition a large amount of new matter.

— Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius' definition of the character table.)



Representation theory is useful because symmetry is everywhere
and linear algebra is powerful!



Categories can have symmetry too!



Categories can have symmetry too!

Caution: What “linear” means is more subtle.

Usually it means to study categories in which one has operations like direct sums, limits and colimits, kernels . ..

(Using these operations one can try to “categorify linear algebra” by taking sums, cones etc. If we are lucky Ben

Elias will have more to say about this.)



Example: Given a variety X one can think about Coh(X) or
D"?(CohX) as a linearisation of X.
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character table (essentially by semi-simplicity).



Example: Given a variety X one can think about Coh(X) or
D"?(CohX) as a linearisation of X.

Example: Given a finite group G its “C-linear shadow” is the
character table (essentially by semi-simplicity).

The subtle homological algebra of kG if kG is not semi-simple
means that Rep kG or D®(Rep kG) is better thought of as its
k-linear shadow.



Example: Given a variety X one can think about Coh(X) or
D"?(CohX) as a linearisation of X.

Example: Given a finite group G its “C-linear shadow” is the
character table (essentially by semi-simplicity).

The subtle homological algebra of kG if kG is not semi-simple
means that Rep kG or D®(Rep kG) is better thought of as its
k-linear shadow.

Amusing: Under this analogy difficult conjectures about derived equivalence (e.g. Broué conjecture) are higher

categorical versions of questions like “can two groups have the same character table”?
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In classical representation theory we ask:
What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke
algebras, ...

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing.

We have both a general theory and a rich base of examples.)
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In classical representation theory we ask:
What are the basic linear symmetries?

Partial answer: Groups, Lie algebras, quantum groups, Hecke
algebras, ...

(Note that here there are objects (e.g. compact Lie groups) whose representation theory is particularly appealing.

We have both a general theory and a rich base of examples.)
In higher representation theory we ask:
What are the basic categorical symmetries?

| would suggest that we don't know the answer to this question. We are
witnessing the birth of a theory. We know some examples which are both
intrinsically beautiful and powerful, but are far from a general theory.



R. Rouquier, 2-Kac-Moody algebras, 2008

Over the past ten years, we have advocated the idea that there
should exist monoidal categories (or 2-categories) with an
interesting “representation theory”: we propose to call
"“2-representation theory” this higher version of representation
theory and to call “2-algebras” those “interesting” monoidal
additive categories. The difficulty in pinning down what is a
2-algebra (or a Hopf version) should be compared with the
difficulty in defining precisely the meaning of quantum groups (or
quantum algebras).



First steps in higher representation theory.



Given a vector space V its symmetries are End(V/).
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Given a vector space V its symmetries are End(V/).

In representation theory we study homomorphisms A — End(V)
for A an algebra and ask what they might tell us about V.

Given an (additive) category C its symmetries are End(C) (all
(additive) endofunctors of C).

In higher representation theory we study homomorphisms
A — End(V) for A a monoidal category and ask what such
homomorphisms might tell us about C.



Thus algebras are replaced by (additive or sometimes abelian)
tensor categories.

Recall: A is an additive tensor category if we have a bifunctor of
additive categories:

(M1, Mz) — M; ® M
together with a unit 1, associator, ...

Examples: Vecty, Rep G, G-graded vector spaces, End(C)
(endofunctors of an additive category), ...



A A-module is an additive category M together with a ®-functor

A = Fun(M, M).



A A-module is an additive category M together with a ®-functor

A = Fun(M, M).

What exactly this means can take a little getting used to.

As in classical representation theory it is often more useful to think
about an “action” of A on M.
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A first example:

A := Rep SU; (= Repgy sl2(C))
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A is generated under sums and summands by nat := C?.



A first example:
A := Rep SU; (= Repgy sl2(C))

A is generated under sums and summands by nat := C?.

An A-module is a recipe M — nat - M and a host of maps
Hom 4 (nat®™ nat®") — Hom((nat®™ - M, nat®" . M)

satisfying an even larger host of identities which | will let you
contemplate.



Let M be an A = Rep SU>-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.
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Let M be an A = Rep SU>-module which is

1. abelian and semi-simple,

2. indecomposable as an A-module.

Examples:
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M := Rep St with V - M := (Resg, V) ® M.
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Examples:
M := Vectc with V - M := For(V) ® M ("“trivial rep")
M :=Rep SU, with V- M := V® M (“regular rep”)
M := Rep St with V - M := (Resg, V) ® M.

M :=RepT (I = SU, finite or Nsy,(S)) with
VM := (Resgy, V) ® M.

Theorem

(Classification of representations of Rep SUs.) These are all.
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Remarkably, the action of Rep SU, on the Grothendieck group of
M already determines the structure of M as an Rep SU,-module!



Remarkably, the action of Rep SU, on the Grothendieck group of
M already determines the structure of M as an Rep SU,-module!

This is an example of “rigidity” in higher representation theory.



An example of higher representation theory
(joint with Simon Riche).



We want to apply these ideas to the modular (i.e. characteristic p)
representation theory of finite and algebraic groups.

Here the questions are very difficult and we will probably never
know a complete and satisfactory answer.



Some motivation from characteristic 0:

Recall the famous Kazhdan-Lusztig conjecture (1979):

ch(Lw) = > (D)™~ OIPy 4 (1)ch(My)
yeW

(Here Ly, (resp. M,) is a simple highest weight module (resp. Verma
module) for a complex semi-simple Lie algebra, and P, ,, is a
“Kazhdan-Lusztig" polynomial.)



The Kazhdan-Lusztig conjecture has 2 distinct proofs:

1. Geometric: Apply the localization theorem for g-modules to
pass to differential operators (D-modules) on the flag variety,
then pass through the Riemann-Hilbert correspondence to
land in perverse sheaves, and using some deep geometric tools
(e.g. proof of Weil conjectures) complete the proof
(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinsky-Kashiwara
1980s). This proof uses every trick in the book!



The Kazhdan-Lusztig conjecture has 2 distinct proofs:

1. Geometric: Apply the localization theorem for g-modules to
pass to differential operators (D-modules) on the flag variety,
then pass through the Riemann-Hilbert correspondence to
land in perverse sheaves, and using some deep geometric tools
(e.g. proof of Weil conjectures) complete the proof
(Kazhdan-Lusztig, Beilinson-Bernstein, Brylinsky-Kashiwara
1980s). This proof uses every trick in the book!

2. Categorical: Show that translation functors give an action of
“Soergel bimodules” on category O. Then the
Kazhdan-Lusztig conjecture follows from the calculation of
the character of indecomposable Soergel bimodules (Soergel
1990, Elias-W 2012). This proof is purely algebraic.



We want to apply the second approach to the representation
theory of reductive algebraic groups.

The first approach has also seen recent progress (Bezrukavnikov-Mirkovic-Rumynin) however it seems much more

likely at this stage that the second approach will yield computable character formulas.



For the rest of the talk fix a field k and a connected reductive
group G like GL, (where we will state a theorem later) of Sp,
(where we can draw pictures).



For the rest of the talk fix a field k and a connected reductive
group G like GL, (where we will state a theorem later) of Sp,
(where we can draw pictures).

If k is of characteristic 0 then Rep G looks “just like
representations of a compact Lie group”. In positive characteristic
one still has a classification of simple modules via highest weight,

character theory etc. However the simple modules are usually
much smaller than in characteristic zero.
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Repq 2 Rep G the principal block.

Repy = Rep G depends on p!



The analogue of the Kazhdan-Lusztig conjecture in this setting is:

Lusztig's character formula (1979): If x -0 is “restricted” (all digits
in fundamental weights less than p) then

ch(xp0) = D (=1 IPy o (1)ch(A(y -5 0)).

For non-trivial reasons this gives a character formula for all simple modules.



1. 1979: Lusztig conjecture this formula to hold for p = 2h — 2
(h = Coxeter number). Later Kato suggested that p > h is
reasonable.
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. 1979: Lusztig conjecture this formula to hold for p = 2h — 2
(h = Coxeter number). Later Kato suggested that p > h is
reasonable.

. 1994: Proved to hold for large p without an explicit bound by
Andersen-Janzten-Soergel, Kashiwara-Tanisaki, Lusztig,
Kazhdan-Lusztig.

. 2008: Fiebig gave a new proof for p » 0 as well as an explicit
(enormous) bound (e.g. at least of the order of p > n™ for
SL,)

. 2013: Building on work of Soergel and joint work with Elias,
He, Kontorovich and Mcnamara | showed that the Lusztig
conjecture does not hold for many p which grow exponentially
in n. (E.g. fails for p = 470 858 183 for SLiqo.)
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“matrix coefficients of tensoring with objects in Rep G”



Repq 2 Rep G the principal block.
On Repq one has the action of wall-crossing functors:
“matrix coefficients of tensoring with objects in Rep G”

Let W denote the affine Weyl group and S = {sp, ..., s,} its
simple reflections. For each s € S one has a wall-crossing functor
=s. These generate the category of wall-crossing functors.

(Z63 555+, =s,) C Repyg.



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of diagrammatic Soergel bimodules.



Main conjecture: This action of wall-crossing functors can be
upgraded to an action of diagrammatic Soergel bimodules.

The category of diagrammatic Soergel bimodules is a fundamental
monoidal category in representation theory.

It can be thought of as one of the promised objects which has
interesting 2-representation theory.
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Theorem: Our conjecture holds for G = GL,,.



Theorem: Our conjecture holds for G = GL,,.

Consequences of the conjecture...



The category of diagrammatic Soergel bimodules is a natural home
for the canonical basis and Kazhdan-Lusztig polynomials. In fact,
because it is defined over Z we get the p-canonical basis and
p-Kazhdan-Lusztig polynomials for all p.



The category of diagrammatic Soergel bimodules is a natural home
for the canonical basis and Kazhdan-Lusztig polynomials. In fact,
because it is defined over Z we get the p-canonical basis and
p-Kazhdan-Lusztig polynomials for all p.

Theorem: Assume our conjecture or G = GL,,. Then there exist
simple formulas for the irreducible (if p > 2h — 2) and tilting (if
p > h) characters in terms of the p-canonical basis.



The category of diagrammatic Soergel bimodules is a natural home
for the canonical basis and Kazhdan-Lusztig polynomials. In fact,
because it is defined over Z we get the p-canonical basis and
p-Kazhdan-Lusztig polynomials for all p.

Theorem: Assume our conjecture or G = GL,,. Then there exist
simple formulas for the irreducible (if p > 2h — 2) and tilting (if
p > h) characters in terms of the p-canonical basis.

Thus the p-canonical basis controls precisely when Lusztig's
conjecture holds, and tells us what happens when it fails.



Other consequences of our conjecture:

1. A complete description of Rep, in terms of the Hecke
category, existence of a Z-grading, etc.



Other consequences of our conjecture:

1. A complete description of Rep, in terms of the Hecke
category, existence of a Z-grading, etc.

2. All three main conjectures in this area (Lusztig conjecture,
Andersen conjecture, James conjecture) are all controlled by
the p-canonical basis. (Actually, the links to the James
conjecture need some other conjectures. They should follow
from work in progress by Elias-Losev.)
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Thanks!

Slides:
people.mpim-bonn.mpg.de/geordie/Cordoba.pdf
Paper with Riche (all 136 pages!):
Tilting modules and the p-canonical basis,

http://arxiv.org/abs/1512.08296



