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Dear Hiring Committee,

I would like to apply for the position of Professor in Mathematics at the University of Sydney.
I have been employed as a research professor (level W2) at the Max Planck Insitute in Bonn,
Germany. This is one of the foremost mathematical research institutes in the world. Prior
to this I held an EPSRC posdoctoral research fellowship at the University of Oxford and,
concurrently, a Junior Research Fellowship (JRF) at St. Peter’s college.

In 2016 I was awarded the inaugural Claude Chevalley Prize in Lie Theory from the Amer-
ican Mathematical Society. I was honored for my ". . . work on the representation theory of
Lie algebras and algebraic groups [which includes] proofs and reproofs of some longstand-
ing conjectures as well as spectacular counterexamples to the expected bounds in others.”
The prize citation continues: "Williamson provided a new framework for thinking about these
conjectures—a framework that revealed how inadequate the numerical evidence for these con-
jectures really had been. Williamson’s work has re-opened the field of modular representations
to new ideas, in a sense taking it beyond a focus on the famous conjectures."

I have papers published in the Annals of Mathematics and the Journal of the American
Mathematical Society. These two journals are widely regarded as the two most prestigious
journals in pure mathematics. (The majority of mathematicians never publish in these journals;
leading mathematicians usually publish in these journals only a few times in their careers.) A
number of my papers have appeared or will appear in Duke Mathematical Journal, Compositio
Mathematica, Annales scientifiques de l’ENS and Proceedings of the London Mathematical
Society, all of which have extremely high standards for research quality and exposition.

In mathematics, invitations to international conferences are one of the main indicators of
research quality. I have been invited to give one of the two talks in the algebra section at the
2016 European Congress of Mathematics, which is the premier European mathematics con-
ference. I have also been invited to speak at the Seminaire Bourbaki in Paris. This seminar
has been running since 1948 and has served over the last half century as a barometer of math-
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Let G be a group and V be a vector space.

A representation of G is a homomorphism:

ρ : G Ñ GLpV q

After fixing a basis of V we are “representing” our group by matrices.



Let G be a group and V be a vector space.

A representation of G is a homomorphism:

ρ : G Ñ GLpV q

A representation is the same thing as a G -module:

a linear action of G on V .



Representation theory is the study of linear actions (of groups,
algebras, Lie algebras, . . . )



“I’ve spent most of the last five years thinking about what a
representation is. I think I now understand, and I’m hoping both to
write some of it down, and to begin thinking about what a group

is. We can hope...”

– Ian Grojnowski, c. 2003.

For some of the results, see Grojnowski’s entry on representation theory

in the The Princeton Companion to Mathematics.



Mathematicians first began studying finite groups in earnest
following the work of Galois in 1832.

Frobenius discovered the character table of a finite group in 1896
in Berlin. It took him another year to realise that he was studying

representations.



– Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ discovery of the character table.)



– Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius’ discovery of the character table.)



1. A representation ρ : G Ñ V is simple if the only G -invariant
subspaces of V are t0u and V itself.

2. A representation is semi-simple if it is isomorphic to a direct
sum of simple representations.

3. If G is finite then any representation over C is semi-simple.

4. If ρ : G Ñ V is a finite-dimensional representation over a field
k then its character is the function

χρ : G Ñ k

g ÞÑ Trpgq.

5. If k is a field of characteristic p then there exist
representations over k which are not semi-simple if and only if
p divides |G |. In the case the study of representations over k
is called modular representation theory.



Recall the classification of finite simple groups:

Cyclic Y Alternating Y Lie type Y Sporadic

Cyclic “ tZ{pZ | p primeu

Alternating “ tAn | n ě 5u

Lie type “ simple groups of Lie type, e.g. PSLnpFqq, . . . , E8pFqq.

Sporadic “ the 26 sporadic simple M11, . . . , Monster



The representation theory of the cyclic groups is easy.

We will concentrate on the representation theory of groups of Lie
type and of symmetric groups.

Why the symmetric group Sn?

1. Sn might be the most “basic” of all finite groups;

2. Sn contains An as a normal subgroup of index 2;

3. Sn is the Weyl group of GLn, and “is” GLnpF1q!

(The sporadic simple groups will be ignored for the rest of this lecture.)



What is known?

Let us first consider the “easy” case of representations over C:

Frobenius classified all simple representations of the symmetric
group and computed their characters in 1900.

For groups of Lie type the situation is very intricate. However we
know all simple representations and many of their character values.

This has achieved by a number of authors, with the bulk of the
work carried out by Lusztig (c. 1974-present).



If k is a field of characteristic p and p ď n (i.e. if p divides
|Sn| “ n!) then the study of representations of Sn over k

(“modular representation theory of the symmetric group”) is very
complicated.

We know how many simple Sn-modules there are.

Except for a small number of cases, even their dimensions are
completely unknown!



From now on: p is a prime, q “ pr is a prime power and Fq is the
finite field with q elements.

Consider G pFqq a finite group of Lie type. For example we could
take G “ GLnpFqq,Sp2npFqq,SO2n`1pFqq, . . .

We will consider the representation theory of G pFqq over a field of
characteristic p (“natural characteristic”).

Example: SL2pFqq has a natural 2-dimensional representation: F2
q.

This is a representation in natural characteristic.

The smallest non-trivial representation of SL2pFqq over C is
(usually) of much larger dimension (usually q´1

2 ).



There are surprising parallels between representations in natural
characteristic the representation theory of compact Lie groups.

Let K denote a simply connected compact Lie group

(e.g. K “ SUn or Sp2n).





Basic facts about the smooth representations of K :

1. Any smooth representation is semi-simple.

2.

P`
„
Ñ tsimple smooth reps of Ku{ –

λ ÞÑ V pλq

3. We have the Weyl character formula and Weyl dimension
formula. For example:

dimV pλq “
ź

αPR`

pλ` ρ, αq

pρ, αq

where ρ “ 1
2

ř

αPR`
α.



A basic tool in this talk is the passage

K  GC  GZ  GFp

GZ is the “Chevalley scheme”.

“semi-simple groups can be written down over Z”

With some care this works also on representations:

V  VC  VZ  VFp



Carrying out this process (again care is needed) allows one to
associate to any λ P P` an algebraic representation ∇pλq of GFp .

Here algebraic means that the matrix coefficients of

ρ : GFp Ñ GLpV q

are regular functions on GFp .



Example: Consider the natural representation of SL2 on
V “ kx ‘ ky (column vectors).

For any m ě 0 we get a representation on the symmetric power

∇pmq :“ SmpV q

(i.e. homogenous polynomials in x , y of degree m).

If k “ C these restrict to yield all simple SU2-modules.

These are not all simple in characteristic p:

ˆ

a b
c d

˙

¨ xp “ pax ` cyqp “ apxp ` cpyp.

Hence Lppq :“ kxp ‘ kyp Ă SppV q is a submodule.



The weird and wonderful world of rational representations:

In fact, ∇ppq{Lppq is simple and isomorphic to
Lpp ´ 2q :“ ∇pp ´ 2q. Thus we have a short exact sequence

Lppq ãÑ ∇ppq� Lpp ´ 2q.

In the Grothendieck group we can write

r∇ppqs “ rLppqs ` rLpp ´ 2qs

Moreover, Lppq – V p1q, where V p1q is the representation given by
the Frobenius map

ˆ

a b
c d

˙

ÞÑ

ˆ

ap bp

cp dp

˙



Theorem (Chevalley): ∇pλq contains a unique simple
subrepresentation Lpλq. The Lpλq are pairwise non-isomorphic and

exhaust all simple G -modules.

Hence one has a classification by highest weight just as in
characteristic zero. However the simple modules are usually much

smaller than in characteristic zero. (The definition of Lpλq as a
simple submodule is not explicit.)



Given any representation of GFp we can restrict to obtain a
representation of the finite group G pFqq.

Theorem (Steinberg): There exists an explicit finite subset of
“q-restricted weights” Pq Ă P` such that restriction gives a

bijection

tLpλq | λ P Pqu
„
Ñ t simple G pFqq-modules u{ –

Thus understanding algebraic representations of GFp also answers
the question for the finite group G pFqq in natural characteristic.



Explicit constructions of Lpλq are a distant dream (except for SL2).

Instead we try to write the unknown in terms of the “known”:

rLpλqs “
ÿ

aµλr∇pµqs.

As “reductions modulo p”, the r∇pµqs have the same dimensions
and characters as their characteristic zero cousins (Weyl’s

character formula). One can see the above equality as an identity
of formal characters.

Example: For SL2 we saw

rLppqs “ r∇ppqs ´ r∇pp ´ 2qs









Verma noticed that behind all of this lurks an action of an affine
Weyl group “dilated by p”.

We denote the action of this group λ ÞÑ x ¨p λ.







Lusztig’s character formula (1980): If x ¨p 0 is “p-restricted” and p
is “not too small” then

rLpx ¨p 0qs “
ÿ

y

p´1q`pyq´`pxqPw0y ,w0xp1qr∇py ¨p 0qs.

The Px ,y are Kazhdan-Lusztig polynomials associated to the affine
Weyl group. (Tricky, combinatorial, but “easy” if you or your

computer has a good memory.)

This formula is enough to determine all characters.



Lusztig’s conjecture (1980).

Proceedings of Symposia in Pure Mathematics
Volume 37, 1980

SOME PROBLEMS IN THE
REPRESENTATION THEORY OF

FINITE CHEVALLEY GROUPS

GEORGE LUSZTIGI

In the first section of this paper, I will present a classification of the unipotent
(complex) representations of a finite Chevalley group and state a conjecture on
their character values. The second section is a review of results of Kazhdan and
myself [3], [4]; these lead to some questions which are formulated in the third
section. In particular, I will state a conjecture on the character of modular
representations of a finite Chevalley group.

1. Classification of unipotent characters (see [1], [5], [6], [7]). Let G be an
almost simple algebraic group defined and split over the finite field Fq (q =
power of a prime p). Choose a maximal torus and a Borel subgroup B D T such
that T and B are both defined over Fq. The G(Fq)-conjugacy classes of maximal
tori in G which are defined over Fq are in 1-1 correspondence with the
conjugacy classes in the Weyl group W(T)/T. Let T. be a maximal torus
defined over Fq, corresponding to w E W. The virtual character RT (l) of G(Fq)
(see [1] and the lectures of Curtis and Srinivasan) will be denoted R. We have
Rw = Rw, if and only if w, w' are conjugate. By definition, an irreducible
character p of G(Fq) is unipotent if <p, Rw> 0, for some w E W. For example
all components of R1 = IndB(Fgj(1) are unipotent characters; it is well known
that they are in 1-1 correspondence with the irreducible characters of W. For
each irreducible character X of W, we denote by Xq the corresponding irreduci-
ble character of G(Fq) contained in R1, and we define two polynomials PX(Z),
PX(Z) by

PX(q) = dim( W1 -12 X(w)R.),
W

PX(q) = dim(X;).

1980 Mathematics Subject Classification. Primary 20D06, 20C15; Secondary 20C20.
'Supported in part by the National Science Foundation.
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Given y, w E W, we say that y -< w if the following conditions are satisfied:
y < w, l(w) - l(y) is odd and deg Py w = -'(1(w) - l(y) - 1). Using -< , we shall
define an equivalence relation '"LR on W. Given x, x' E W, we say x <LR x' if
there exists a sequence of elements of W: x = x0, x1, ... , x,, = x' such that for
each i (1 < i < n) we have x, _ 1 -< xt or x. -< x, _ 1 and, moreover, for some
s E S, we have either sx! _ 1 <x,_1, sx1 > x1 or xr _ is <x_1, x.s > x1. We say
thatx -LRx'ifx <LRx' and x' <LRX.

The equivalence classes for '"LR are called the 2-sided cells of W. By [3, 2.3],
for any x E W, the subspace of 3C with basis Ty (y <LR x) is a 2-sided ideal of
3C. It follows that the subspace spanned by the 7T for y in a fixed 2-sided cell
can be regarded as a quotient III' where 13 I' are 2-sided ideals in 3C and,
therefore, it is a 2-sided 3C-module.

3. Three more problems. Assume first that W is the Weyl group of G as in § 1.
Each 2-sided cell of W gives rise to a 2-sided 3C-module, hence (by specializing
q -* 1) to a 2-sided W-module. These give a decomposition (over Q) of the
2-sided regular representation of W.

Problem III. Two irreducible characters X', X" of W appear in the same 2-sided
cell of W if and only if XQ, X?' correspond to the same special representation of W.

In the remainder of this section G (as in § 1) will be assumed to be simply
connected. The Fq-rational structure on G will not play any role so G is now
regarded as an algebraic group over Fq. Let X(T) be the character group of T
and let Q be its subgroup generated by the roots. Let W. be the group of affine
transformations of X(T) generated by W and by translations by elements in
p.Q. Then W. is an infinite Coxeter group: its standard set of generators consists
of those of W, together with the reflection in the hyperplane (q E X(T)Jao (rp)
= p), where ao is the highest coroot.

In [3, 1.5], Kazhdan and I formulated a conjecture on the characters of the
irreducible quotients of Verma modules of a complex simple Lie algebra. I wish
to state a modular analogue of that conjecture. Let p E X(T) be defined by the
condition that p takes the value 1 on each simple coroot. An element w E W. is
said to be dominant if - wp - p takes > 0 values on each simple coroot. For
such w, let L. be the irreducible representation of G, of finite dimension over F
with highest weight - wp - p. Let V. be the Weyl representation of G over FP
obtained by reducing modulo p the irreducible representation with highest
weight - wp - p of the corresponding complex group. (It is well defined in the
Grothendieck group.) We assume that ao (p) < p.

Problem IV. Assume that w is dominant and it satisfies the Jantzen condition
ao (- wp) < p(p - h + 2), where h is the Coxeter number. Then

ch L. = 2 (- l)t(w)-rcr)Py,w(1)ch Vy. (4)
y E W dominant

Y <W

From this, one can deduce the character formula for any irreducible finite
dimensional representation of G (over Fr), by making use of results of Jantzen
and Steinberg. The evidence for this character formula is very strong. I have
verified it in the cases where G is of type A2, B2 or G2. (In these cases, ch Lw has
been computed by Jantzen.) One can show using results of Jantzen [2, Anhang]



Understanding Lusztig’s conjecture, and in particular deciding for
which p it holds has been one of the central puzzles in modular

representation theory over the last thirty years.



What “large” means on the previous slide is a tricky business.

Let h denote the Coxeter number of G

(e.g. h “ n for GLn, h “ 2n for SP2n, h “ 30 for E8):

1. 1980: Lusztig conjectured p ě 2h ´ 3 (Jantzen condition);

2. 1985: Kato conjectured p ě h;

3. 1994: Several hundred pages of Andersen-Jantzen-Soergel,
Kazhdan-Lusztig, Kashiwara-Tanisaki and Lusztig prove the
conjecture for large p without any explicit bound!

W. Soergel (2000): “Bei Wurzelsystemen verschieden von A2,
B2, G2, A3, weiß man aber für keine einzige Charakteristik ob
sie hinreichend groß ist.”
. . . a particularly strange situation for finite group theorists.



Let h denote the Coxeter number of G .

(e.g. h “ n for GLn, h “ 2n for SP2n, h “ 30 for E8)

1. 1980: Lusztig conjectured p ě 2h ´ 3 (Jantzen condition);

2. 1985: Kato conjectured p ě h;

3. 1994: Andersen-Jantzen-Soergel, Kazhdan-Lusztig,
Kashiwara-Tanisaki, Lusztig: the conjecture holds for large p;

4. 2008: Fiebig gave an explicit enormous bound (e.g. p ą 1040

for SL9 against the hoped for p ě 11)!



The following 2013 theorem has a part joint with Xuhua He and
another part joint with Alex Kontorovich and Peter McNamara,
and builds on work done in a long term project with Ben Elias.

Theorem

There exists a constants a ą 0 and c ą 1 such that Lusztig’s
conjecture on representations of SLn fails for many primes p ą acn

and n " 0.

The theorem implies that there is no polynomial bound in the
Coxeter number for the validity of Lusztig’s conjecture. This should
be compared with the hope (believed by many for over thirty years)
that the bound is a simple linear function of Coxeter number.

Provably we can take a “ 5{7 and c “ 1.101. Experimentally c can be

taken much larger. For example, Lusztig’s conjecture fails for SL100pFpq

with p “ 470 858 183.



These results also yield counter-examples
to the James conjecture (1990).

Gordon James formulated his conjecture
following formidable calculations. He
conjectured a formula for the decompo-
sition numbers of simple representations
of Sn if p ą

?
n (“p not too small”).

His conjecture, if true, would represent
major progress on the problem.

His conjecture is true for n “ 1, 2, . . . , 22.

James, The decomposition matrices of GLnpqq for n ď 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225–265.

DECOMPOSITION MATRICES 261

The matrices A10 for e = 3

n = 10, e - 3 , p > 3

(10) 1
(91) 1
(82) 1 1

(812) 1
(73) 1 1

(721) 1 1 1 1
(713) 1 1
(64) 1

(631) 1 1
(62 2 ) 1 1 1

(6212) 1 1 1 1 1
(61 4 ) 1 1

(5 2 ) 1 1
(541) 1 1
(532) 1 1 1 1

(5312) 1
(5221) 1 1 1 1 1 1
(521 3 ) 1 1 1 1

(51 5 ) 1 1
( 4 ^ ) 1 1 1

(4 2 1 2 ) 1 1 1 1
(43 2 ) 1 1 1 1

(4321) 1 1 1 1 1 1 1 1 1 1 1
(4313) 1 1 1 1 1 1 1 1 1

(42 3 ) 1 1 1 1 1
(42 2 1 2 ) 1

(4214) 1 1 1 1 1 1 1 1 1
(41 6 ) 1 1 1
(3 3 1) 1 1 1 1 1 1

(3¥) 1 1 1
Qhl2) 1 1 1 1 1
(321*) 1 1 1 1 1
(3231) 1 1 1

(32213) 1 1 1 1 1
(3215) 1 1 1 1 1 1 1 1 1 1 1
(317) 1 1 1
(2s) 1 1 1 1 1 1

(2412) 1 1 1
(23lS 1 1 1 1 1 1 1 1 1
(221*) 1 1 1 1 1 1 1
(218) 1 1 1
(I10) 1 1 1 1

Adjustment matrix

n = 10 (331) 1
e = 3 (2314) 1 1
/> = 3 (I10) 1 1



Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for Sn for all n ě 1 744 860.

Another key tool are techniques going back to Schur’s PhD thesis
in Berlin in 1901 (one year after Frobenius first wrote down the

character table of the symmetric group)!
blah blah blah blah blah blah blah

We are trying to work out where, between n “ 22 and
n “ 1 744 860, the conjecture first goes wrong.

There is still much to say about Sn, possibly the most fundamental
of all finite groups . . .



A key step in establishing this theorem is a “translation of the
problem into topology” completed by Wolfgang Soergel in 2000.

This is an instance of “geometric representation theory”: the
topology of complex algebraic varieties has much to say about

representation theory.

This field has been driven by Lusztig and many others over the
past forty years. It must sadly stay a black box in this talk.

Example: The characters of GLnpFqq may be described via certain
geometric objects (“character sheaves”) which live on of GLnpCq.

Thus there is a geometric procedure to produce the character table
of GLnpFqq for “all q’s at once”.



Roughly speaking, the coefficients where one takes representations
corresponds to the coefficients of cohomology.



Example:

Consider the quadric cone (dimC “ 2, singular space). We can
draw a real picture:



If we intersect a small sphere around the singularity with X we
obtain ...

Hint: X “ C2{p˘1q so L “ S3{p˘1q “ RP3.



We have H2pRP3q “ Z{2Z and all other groups are torsion free.
This turns out to be equivalent to the fact that the representation

theory of S2 is “different” in characteristic 2.



Theorem

Let c be a non-zero entry of a word w of length ` in the generators:

ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Then associated to w one can find Z{cZ-torsion in a variety
controlling the representation theory of SL3``5.

In particular, any prime p dividing c which is larger than 3`` 5
gives a counter-example to the expected bounds in Lusztig’s
conjecture.

For the experts: we find torsion in the costalk of an integral intersection

cohomology complex of a Schubert variety in SL3``5pCq{B.

Non-trivial number theory (relying on ideas surrounding the affine
sieve and Zaremba’s conjecture) yields that the prime divisors of c

above grow like Opcnq for come c ą 1.



p-torsion in local intersection cohomology of Schubert varieties in SLn{B.



p-torsion in local intersection cohomology of Schubert varieties in SLn{B.



p-torsion in local intersection cohomology of Schubert varieties in SLn{B.



p-torsion in local intersection cohomology of Schubert varieties in SLn{B.



In summary:

The Lusztig and James conjecture predict a remarkable regularity
in the modular representation theory of symmetric groups and

finite groups of Lie type for large primes.

However it takes much longer for this regularity to show itself than
was expected.

For “mid range primes” (e.g. n ă p ă cn) subtle and unexpected
arithmetic questions show up in the representation theory of

groups like GLnpFpq.



In recent joint work with Simon Riche we have proposed a new
conjecture which gives an answer for all primes. Very roughly, it
involves replacing the Kazhdan-Lusztig polynomials in Lusztig’s
conjecture with p-Kazhdan-Lusztig polynomials. Unfortunately

these polynomials are much more difficult to compute.

Our conjecture is true for GLn and SLn if p ą 2n ´ 2 and in work
in progress with Achar, Riche and Makisumi we hope to prove it

for all G .

However we still can’t decide exactly where the uniformity of the
Lusztig and James conjecture takes over.



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for

sure whether order or chaos reigns. If any excitement can be
derived from what I have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but

which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the

idea: “Now let me think of something better myself.”

– Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.


