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Let G be a group and V be a vector space.

A representation of G is a homomorphism:

p:G— GL(V)

After fixing a basis of V we are “representing” our group by matrices.



Let G be a group and V be a vector space.

A representation of G is a homomorphism:

p: G — GL(V)

A representation is the same thing as a G-module:

a linear action of G on V.



Representation theory is the study of linear actions (of groups,
algebras, Lie algebras, ...)



“I've spent most of the last five years thinking about what a
representation is. | think | now understand, and I'm hoping both to
write some of it down, and to begin thinking about what a group

is. We can hope...”

— lan Grojnowski, c. 2003.

For some of the results, see Grojnowski's entry on representation theory
in the The Princeton Companion to Mathematics.



Mathematicians first began studying finite groups in earnest
following the work of Galois in 1832.

Frobenius discovered the character table of a finite group in 1896
in Berlin. It took him another year to realise that he was studying
representations.



Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
Tt may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

— Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ discovery of the character table.)



PREFACE TO THE SECOND EDITION

RY considerable advances in the theory of groups of

finite order bave been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is
accordingly in the present edition a large amount of new matter.

— Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius' discovery of the character table.)



. A representation p : G — V is simple if the only G-invariant
subspaces of V are {0} and V itself.

. A representation is semi-simple if it is isomorphic to a direct
sum of simple representations.
3. If G is finite then any representation over C is semi-simple.

4. If p: G — V is a finite-dimensional representation over a field
k then its character is the function

Xp: G —k
g — Tr(g).

. If k is a field of characteristic p then there exist
representations over k which are not semi-simple if and only if
p divides |G|. In the case the study of representations over k
is called modular representation theory.



Recall the classification of finite simple groups:

Cyclic v Alternating o Lie type o Sporadic

Cyclic = {Z/pZ | p prime}
Alternating = {A, | n > 5}
Lie type = simple groups of Lie type, e.g. PSL,(Fg), ..., Eg(Fq).

Sporadic = the 26 sporadic simple M1, ..., Monster



The representation theory of the cyclic groups is easy.

We will concentrate on the representation theory of groups of Lie
type and of symmetric groups.

Why the symmetric group S,?

1. S, might be the most “basic” of all finite groups;
2. S, contains A, as a normal subgroup of index 2;

3. S, is the Weyl group of GL,, and “is" GL,(F)!

(The sporadic simple groups will be ignored for the rest of this lecture.)



What is known?
Let us first consider the “easy” case of representations over C:

Frobenius classified all simple representations of the symmetric
group and computed their characters in 1900.

For groups of Lie type the situation is very intricate. However we
know all simple representations and many of their character values.
This has achieved by a number of authors, with the bulk of the
work carried out by Lusztig (c. 1974-present).



If k is a field of characteristic p and p < n (i.e. if p divides
|Sn| = n!) then the study of representations of S, over k
("modular representation theory of the symmetric group”) is very
complicated.

We know how many simple S,-modules there are.

Except for a small number of cases, even their dimensions are
completely unknown!



From now on: pis a prime, g = p" is a prime power and F is the
finite field with g elements.

Consider G(Fg) a finite group of Lie type. For example we could
take G = GLn(Fq), szn(Fq), SO2n+1<Fq)a Ce.

We will consider the representation theory of G(F,) over a field of
characteristic p (“natural characteristic”).

Example: SL>(Fg4) has a natural 2-dimensional representation: Fg.
This is a representation in natural characteristic.

The smallest non-trivial representation of SLy(Fg) over C is
(usually) of much larger dimension (usually %5 1)



There are surprising parallels between representations in natural
characteristic the representation theory of compact Lie groups.

Let K denote a simply connected compact Lie group

(e.g. K = SU, or Spap).
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Basic facts about the smooth representations of K:

1. Any smooth representation is semi-simple.
2.

P, = {simple smooth reps of K}/ =~
A— V(A)

3. We have the Weyl character formula and Weyl dimension
formula. For example:

(A+p,a)

dimV(\) = [] o)

OLER+

1
where p = 3>} g, @.



A basic tool in this talk is the passage
K« GcevGz ~~ Gf,
Gz is the "Chevalley scheme”.
“semi-simple groups can be written down over Z"
With some care this works also on representations:

VerVoerVz ~ VE,



Carrying out this process (again care is needed) allows one to
associate to any A € P, an algebraic representation V() of Gr,.

Here algebraic means that the matrix coefficients of
p: Gg, — GL(V)

are regular functions on Gg,.



Example: Consider the natural representation of SLy on
V = kx @ ky (column vectors).

For any m = 0 we get a representation on the symmetric power
V(m):=S"(V)
(i.e. homogenous polynomials in x, y of degree m).
If k = C these restrict to yield all simple SU>-modules.

These are not all simple in characteristic p:

<i 3) -xP = (ax + cy)P = aPxP + cPyP.

Hence L(p) := kxP @ kyP < SP(V) is a submodule.



The weird and wonderful world of rational representations:

In fact, V(p)/L(p) is simple and isomorphic to
L(p—2) := V(p—2). Thus we have a short exact sequence

L(p) — V(p) = L(p —2).
In the Grothendieck group we can write
[V(p)] = [L(p)] + [L(p — 2)]

Moreover, L(p) = V), where V() is the representation given by
the Frobenius map

ab'_)apbp
c d cP dP



Theorem (Chevalley): V() contains a unique simple
subrepresentation L(\). The L()\) are pairwise non-isomorphic and
exhaust all simple G-modules.

Hence one has a classification by highest weight just as in
characteristic zero. However the simple modules are usually much
smaller than in characteristic zero. (The definition of L()\) as a
simple submodule is not explicit.)



Given any representation of Gg, we can restrict to obtain a
representation of the finite group G(Fg).

Theorem (Steinberg): There exists an explicit finite subset of
“g-restricted weights” P, < P, such that restriction gives a
bijection
{L(N\) | A € Pg} = { simple G(Fq)-modules }/ =~
Thus understanding algebraic representations of G, also answers

the question for the finite group G(Fg) in natural characteristic.




Explicit constructions of L(\) are a distant dream (except for SLp).

Instead we try to write the unknown in terms of the “known":

(L] =D} V(W]

As “reductions modulo p”, the [V(u)] have the same dimensions
and characters as their characteristic zero cousins (Weyl's
character formula). One can see the above equality as an identity
of formal characters.

Example: For SL, we saw

[L(p)] = [V(P)] = [V(P—2)]
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Verma noticed that behind all of this lurks an action of an affine
Weyl group “dilated by p".

We denote the action of this group A — x -, A.
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Lusztig's character formula (1980): If x -, 0 is “p-restricted” and p
is “not too small” then

[L(x - 0)] = D (=1) W= Py o (D)[V (y - 0)]-
y

The P, are Kazhdan-Lusztig polynomials associated to the affine
Weyl group. (Tricky, combinatorial, but “easy” if you or your
computer has a good memory.)

This formula is enough to determine all characters.



Lusztig's conjecture (1980).

Proceedings of Symposia in Pure Mathematics
Volume 37, 1980

SOME PROBLEMS IN THE
REPRESENTATION THEORY OF
FINITE CHEVALLEY GROUPS

GEORGE LUSZTIG'

obtained by reductng modulo p the irreducible representation with highest
weight —wp — p of the corresponding complex group. (It is well defined in the
Grothendieck group.) We assume that ay/(p) < p.

Problem 1V. Assume that w is dominant and it satisfies the Jantzen condition
ay (—wp) < p(p — h + 2), where h is the Coxeter number. Then

L= F  (=DOTOP ()ch K. O]
¥ €W, dominant
y<

From this, one can deduce the character formula for any irreducible finite
dimensional representation of G (over F,), by making use of results of Jantzen
and Steinberg. The evidence for this character formula is very strong. I have
verified it in the cases where G is of type A,, B, or G,. (In these cases, ch L, has
been computed by Jantzen.) One can show using results of Jantzen [2, Anhang]



Understanding Lusztig's conjecture, and in particular deciding for
which p it holds has been one of the central puzzles in modular
representation theory over the last thirty years.



What “large” means on the previous slide is a tricky business.
Let h denote the Coxeter number of G

(e.g. h = nfor GL,, h = 2n for SPp,, h =30 for Eg):

1. 1980: Lusztig conjectured p = 2h — 3 (Jantzen condition);
2. 1985: Kato conjectured p > h;
3. 1994: Several hundred pages of Andersen-Jantzen-Soergel,

Kazhdan-Lusztig, Kashiwara-Tanisaki and Lusztig prove the
conjecture for large p without any explicit bound!

W. Soergel (2000): “Bei Wurzelsystemen verschieden von Ay,
By, G, Az, weill man aber fiir keine einzige Charakteristik ob
sie hinreichend groB ist.”

...a particularly strange situation for finite group theorists.



Let h denote the Coxeter number of G.

(e.g. h=nfor GL,, h =2n for SP,,, h = 30 for Eg)

1. 1980: Lusztig conjectured p = 2h — 3 (Jantzen condition);
2. 1985: Kato conjectured p > h;
3. 1994: Andersen-Jantzen-Soergel, Kazhdan-Lusztig,

Kashiwara-Tanisaki, Lusztig: the conjecture holds for large p;

. 2008: Fiebig gave an explicit enormous bound (e.g. p > 10%°
for SLg against the hoped for p > 11)!



The following 2013 theorem has a part joint with Xuhua He and
another part joint with Alex Kontorovich and Peter McNamara,
and builds on work done in a long term project with Ben Elias.

Theorem

There exists a constants a > 0 and ¢ > 1 such that Lusztig's
conjecture on representations of SL,, fails for many primes p > ac”
and n > 0.

The theorem implies that there is no polynomial bound in the
Coxeter number for the validity of Lusztig's conjecture. This should
be compared with the hope (believed by many for over thirty years)
that the bound is a simple linear function of Coxeter number.

Provably we can take a = 5/7 and ¢ = 1.101. Experimentally ¢ can be
taken much larger. For example, Lusztig's conjecture fails for SLigo(Fp)
with p = 470 858 183.



These results also yield counter-examples
to the James conjecture (1990).

Gordon James formulated his conjecture
following formidable calculations. He
conjectured a formula for the decompo-
sition numbers of simple representations
of S, if p > +/n (“p not too small”).

His conjecture, if true, would represent
major progress on the problem.

His conjecture is true for n = 1,2,...,22.

James, The decomposition matrices of GLp(q) for n < 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225-265.

The matrices A for e =3

n=10,e=3,p>3
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Following a line of attack suggested by Joe Chuang, the previous
result also yields:

Theorem

The James conjecture fails “generically”. In particular, it is not
true for S, for all n > 1 744 860.

We are trying to work out where, between n = 22 and
n = 1744 860, the conjecture first goes wrong.

There is still much to say about S, possibly the most fundamental
of all finite groups ...



A key step in establishing this theorem is a “translation of the
problem into topology” completed by Wolfgang Soergel in 2000.

This is an instance of “geometric representation theory”: the
topology of complex algebraic varieties has much to say about
representation theory.

This field has been driven by Lusztig and many others over the
past forty years. It must sadly stay a black box in this talk.

Example: The characters of GL,(F4) may be described via certain
geometric objects ( “character sheaves”) which live on of GL,(C).
Thus there is a geometric procedure to produce the character table

of GL,(Fgq) for “all g's at once”.



Roughly speaking, the coefficients where one takes representations
corresponds to the coefficients of cohomology.



Example:

Consider the quadric cone (dimc = 2, singular space). We can
draw a real picture:




If we intersect a small sphere around the singularity with X we
obtain ...

Hint: X = C?/(£1) so L = S3/(+1) = RP3.




We have H?(RP3) = Z/2Z and all other groups are torsion free.
This turns out to be equivalent to the fact that the representation
theory of S is “different” in characteristic 2.




Theorem

Let ¢ be a non-zero entry of a word w of length ¢ in the generators:

) G3)

Then associated to w one can find Z/cZ-torsion in a variety
controlling the representation theory of SL3y 5.

In particular, any prime p dividing ¢ which is larger than 3¢ + 5
gives a counter-example to the expected bounds in Lusztig's
conjecture.

For the experts: we find torsion in the costalk of an integral intersection
cohomology complex of a Schubert variety in SL3;45(C)/B.

Non-trivial number theory (relying on ideas surrounding the affine
sieve and Zaremba's conjecture) yields that the prime divisors of ¢
above grow like O(c") for come ¢ > 1.



p-torsion in local intersection cohomology of Schubert varieties in SL,/B.
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p-torsion in local intersection cohomology of Schubert varieties in SL,/B.
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p-torsion in local intersection cohomology of Schubert varieties in SL,/B.
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p-torsion in local intersection cohomology of Schubert varieties in SL,/B.
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In summary:

The Lusztig and James conjecture predict a remarkable regularity
in the modular representation theory of symmetric groups and
finite groups of Lie type for large primes.

However it takes much longer for this regularity to show itself than
was expected.

For “mid range primes” (e.g. n < p < ¢") subtle and unexpected
arithmetic questions show up in the representation theory of
groups like GL,(Fp).



In recent joint work with Simon Riche we have proposed a new
conjecture which gives an answer for all primes. Very roughly, it
involves replacing the Kazhdan-Lusztig polynomials in Lusztig's
conjecture with p-Kazhdan-Lusztig polynomials. Unfortunately
these polynomials are much more difficult to compute.

Our conjecture is true for GL, and SL,, if p > 2n — 2 and in work
in progress with Achar, Riche and Makisumi we hope to prove it
for all G.

However we still can't decide exactly where the uniformity of the
Lusztig and James conjecture takes over.



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for
sure whether order or chaos reigns. If any excitement can be
derived from what | have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but
which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the
idea: “Now let me think of something better myself.”

— Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.



