
An Introduction to the Brauer and BMW Algebras1

(with an emphasis on the canonical basis and cells of BMW3)

Geordie Williamson

1This document was produced as part of a vacation scholarship at the University of New South Wales. Thanks to
the University of New South Wales and especially to Jie Du who supervised the project. Thanks also to Steve Ward
for proof reading.



Contents

1 The Brauer and BMW Algebras 2

1.1 The Brauer Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Tangles and the BMW Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The Monoid Algebras of Bn and BMWn . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Canonical Bases 16

2.1 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Applying the Main Theorem to the BMW Algebra . . . . . . . . . . . . . . . . . . . 18

2.3 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Results for BMW2 and BMW3 22

3.1 BMW2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 BMW3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

A Avenues for Further Work 29

A.1 A Closer Look at the Tangle Monoid . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.2 Generalisation of the Software for Arbitrary n . . . . . . . . . . . . . . . . . . . . . . 30

A.3 A Rougher Order on Bn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B Implementation of the Algorithms in MAGMA 32

B.1 Calculating the Canonical Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B.2 Calculating the Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 37

1



1 The Brauer and BMW Algebras

1.1 The Brauer Monoid

One common way to get an intuitive feel for a permutation σ ∈ Symn is to draw it as a diagram in
which two rows of n numbers are linked together with lines from the top to bottom indicating the
action of the permutations on the numbered positions. For example, (154)(23) ∈ Sym5 would be
drawn as:

One of the advantages of this representation is that multiplication of permutations becomes a simple
concatenation of diagrams. That is, the second permutation is placed on top of the first and the
middle set of two rows of n dots are joined. For example the following diagram illustrates the
process of multiplying (12)(35) and (13)(254) to get (154)(23):

One assumption that is made when drawing these diagrams is that it is not possible to have two dots
in the top row linked by a loop. For instance the following would not make sense as a permutation:

The Brauer monoid is a generalisation of the symmetric group in that it allows pictures such as
the one above in which lines can be drawn to link dots on the same line. Being a little more formal
we define the Brauer monoid on 2n dots, Bn, to be the set of partitions of [2n] = {1, 2, . . . , 2n}
into 2-subsets. Given any partition d = {[2n] = λ1 ∪ λ2 ∪ · · · ∪ λn} we can form a diagram of
d by connecting two dots with a line if they belong to the same subset (with the dots labeled as
below). If a diagram contains no self-intersection, two lines intersect at most once and at most
two lines intersect at any point then the diagram is called a nice. For example the partition
d = {[10] = {1, 10} ∪ {2, 8} ∪ {3, 4} ∪ {5, 9} ∪ {6, 7}} has the following nice diagram:

2



The following is not a nice diagram of d:

Multiplication is conducted almost identically to the multiplication of permutations except that the
first element in the product in Bn is placed on top in the concatenation. For example the following
diagram illustrates the multiplication of {{1, 10}, {2, 3}, {4, 6}, {5, 9}, {7, 8}} and {{1, 10}, {2, 8}, {3, 4},
{5, 9}, {6, 7}} to get {{1, 9}, {2, 3}, {4, 10}, {5, 8}, {6, 7}}:

There is one subtlety which is introduced when we define multiplication in the Brauer monoid.
It turns out that it is possible to get a number of closed loops when certain members of Bn are
multiplied. For example if:

b = then b2 =

So a more accurate description of an element of Bn is as a partition of [2n] into 2-subsets along
with an integer t ≥ 0 specifying a certain number of closed loops. It is often convenient to regard
two elements of Bn as equivalent if they differ only in the number of closed loops. We will write
B̃n for Bn modulo this equivalence relation.

It turns out that once we have defined multiplication by concatenation the set of Brauer diagrams
becomes a monoid (that is there exists an identity element and multiplication is associative). How-
ever it will take us a little while to develop the tools that will allow us to prove this.

We first introduce the “joins” notation. If f ∈ Bn we say that i is joined to j in f and write i ∼f j,
if i and j are in the same partition. In terms of pictures i and j are joined if i = j or they are
linked with a line. It is immediately obvious that ∼f is reflexive (i ∼f i is always true), symmetric
(i ∼f j implies that j ∼f i) and that if i ∼f j ∼f k then i = k or j = k. From our definition
of multiplication of Brauer diagrams it is clear that i ∼fg j if and only if one of the following
conditions hold:

(B1) i, j ≤ n and i ∼f j.

(B2) i, j ≤ n and there exist k, l ∈ {1, 2, . . . , n} such that i ∼f (k + n), k ∼g l and (l + n) ∼f j

3



(B3) i ≤ n < j and there exists a k ∈ {1, 2, . . . , n} such that i ∼f (k + n) and k ∼g j.

(B4) i, j > n and i ∼g j.

(B5) i, j > n and there exist k, l ∈ {1, 2, . . . , n} such that i ∼g k, (k + n) ∼f (l + n) and l ∼g j

To prove that Bn is associative it is then just a matter of enumerating all possible combinations of
i and j to show that i ∼(fg)h j implies that i ∼f(gh) j. The following lemma saves us a little work
when we come to enumerate all possibilities. It concerns the map ̂: Bn → Bn which can be seen
as flipping the Brauer diagrams so dots on the bottom are taken to the top and vice versa:

d = then d̂ =

Note that if we view a picture of a permutation σ ∈ Symn as a Brauer diagram then σ̂ = σ−1.

Lemma 1.1. The map ̂: Bn → Bn defined by i ∼
f̂

j if (2n− i) ∼f (2n−j) is a bijection satisfyinĝ̂
f = f . Moverover, f̂g = ĝf̂ .

Proof. Let f ∈ Bn and assume that i ∼f j. Then (2n− i) ∼
f̂

(2n− j) so i ∼̂̂
f

j. Hence ̂̂
f = f and

so ̂ is a bijection.

Now assume that i ∼
f̂g

j. Then (2n − 1) ∼fg (2n − j). If (2n − i), (2n − j) ≤ n there are two
possibilities. Either (2n − i) ∼f (2n − j) or there exists k, l ∈ {1, 2, . . . , n} such that (2n − i) ∼f

(k + n), k ∼g l and (l + n) ∼f (2n − j). If (2n − i) ∼f (2n − j) then i ∼
f̂

j with i, j > n and so
i ∼

ĝf̂
j. On the other hand if there exists k, l ∈ {1, 2, . . . , n} such that (2n− i) ∼f (k + n), k ∼g l

and (l + n) ∼f (2n− j) then i ∼
f̂

k′, (k′ + n) ∼ĝ(l′+n) and l′ ∼
f̂

j and so i ∼
ĝf̂

.

If (2n − i) ≤ n < (2n − j) then there exists a k ∈ {1, 2, . . . , n} such that (2n − i) ∼f (k + n) and
k ∼g (2n− j). Setting k′ = n− k we see that i ∼

f̂
k′ and (k′ + n) ∼ĝ j. That is i ∼

ĝf̂
j.

The last case, (2n− i), (2n− j) > n, is similar to the case (2n− i), (2n− j) ≤ n.

We are now ready to prove the theorem:

Theorem 1.2. The set of Brauer diagrams on 2n dots, Bn, with multiplication defined by concate-
nation, is a monoid.

Proof. We first show that Bn has an identity. Consider the picture in which each top dot is joined
to the dot immediately below it:

4



In the joins notation this is the element k ∼id (k + n) for all j ∈ {1, 2, . . . , n}. Let f ∈ Bn be
arbitrary and assume that j ∼f k. If j < n then i ∼f ·id j by B1. If i ≤ n < j then we can write
i ∼f (j−n)+n and (j−n) ∼id j which implies that i ∼f ·id j by B3. Lastly, if i, j > n then we can
write i′ + n = i and j′ + n = j. Then we have j′ ∼id (j′ + n), i′ ∼id (i′ + n) and (i′ + n) ∼f (j′ + n
so i ∼f ·id j by B5. So id is a right identity. A very similar argument shows that id is a left identity.

Associativity is a little more tricky to show. Assume i ∼(fg)h j. Now assume that i, j ≤ n. There
are two possibilities:

(1) If i ∼fg j then either i ∼f j or there exists k, l ∈ {1, 2, . . . , n} such that i ∼f (k+n), k ∼g l and
(l + n) ∼f j. If i ∼f j then i ∼f(gh) j by B1. On the other hand if there exists k, l ∈ {1, 2, . . . , n}
such that i ∼f (k + n), k ∼g l and (l + n) ∼f j then k ∼gh l since k, l ≤ n by B1. Furthermore
since i ∼f (k + n), k ∼gh l and (l + n) ∼f j implies that i ∼f(gh) j by B2.

(2) If there exists k, l ∈ {1, 2, . . . , n} with i ∼fg (k + n), k ∼g l and (l + n) ∼f j then the two
conditions i ∼fg (k + n) and j ∼fg (l + n) imply that there exists p, q ∈ {1, 2, . . . , n} such that
i ∼f (p + n), p ∼g (k + n), j ∼f (q + n) and q ∼g (l + n) by B3. Now p ∼g (k + n), k ∼h l and
(l + n) ∼g q implies that p ∼gh q. Furthermore, i ∼f (p + n), p ∼gh q and (q + n) ∼f j implies that
i ∼f(gh) j.

Now assume that i ≤ n < j. Then B3 tells us that there exists a p ∈ {1, 2, . . . , n} such that
i ∼fg (p + n) and p ∼h j. We can again apply B3 to i ∼fg (p + n) to conclude that there exists a
q ∈ {1, 2, . . . , n} such that i ∼f (q + n) and q ∼g (p + n). But q ∼g (p + n) and p ∼h j implies that
q ∼gh j by B3. Lastly i ∼f (q + n) and q ∼gh j implies that i ∼f(gh) j.

We can now use Lemma 1.1 to show that i ∼(fg)h j implies i ∼f(gh) j if i, j > n. If i, j > n then
there exist i′, j′ ∈ {1, 2, . . . , n} such that 2n − i′ = i and 2n − j′ = j so that i ∼(fg)h implies that
i′ ∼

(̂fg)h
j′ so i′ ∼

ĥ(ĝf̂)
j′. We can now apply the result above to conclude that i′ ∼

(ĥĝ)f̂
j′ and so

i′ ∼
(f̂(gh)

j′ hence i ∼f(gh) j.

So we have shown that i ∼(fg)h j implies that i ∼f(gh) j for i, j ≤ n, i ≤ n < j and i, j > n. The
last case j ≤ n < i follows by reflexivity from i ≤ n < j. Hence multiplication of Brauer diagrams
is associative and Bn is a monoid.

There is one very useful function when dealing with Brauer diagrams. Define `(d) (the length of
d) to be the number of pairs of 2-subsets {i, j}, {k, l} of d ∈ B̃n such that i < k < l < j. In a nice
diagram of d this is just the number of intersections of lines in the diagram. Equipped with the
function ` : B̃n → N we are able to define a partial order on B̃n. We say that d ≤ e if `(d) < `(e)
or d = e. It turns out that this partial order is a very useful one. For example B̃3 has the following
Hasse diagram:

5



Note that each element of each row has the same length and that each element is covered by every
element of the row above.

From the above diagram it is clear that B̃3 has 15 elements. In fact there is a very simple general
formula for the number of elements of B̃n. First imagine that we place 2n labeled balls in a line.
Our task is to count the number of ways that we can divide these balls into groups of two. We
first take the first ball from the front of the line and group it with a randomly chosen ball: there
are 2n − 1 ways to do this. We then take the next ball from the front of the line and group it
with another randomly chosen ball: since three balls are gone there are 2n − 3 ways to do this.
Continuing in this manner we see that the number of ways to divide the balls into groups of 2 is
(2n− 1)(2n− 3)(2n− 5) . . . 5.3.1. This “odd factorial” is very useful and is given its own notation
(defined if n is even): n!! = (n− 1)(n− 3) . . . 5.3.1. From the above observations it is clear that B̃n

has (2n)!! elements.

1.2 Tangles and the BMW Monoid

In the previous section we introduced the Brauer monoid as a generalisation of the Symmetric
group. In this section we introduce Tangles and BMW monoid which can be seen as a further
generalisation of the Brauer monoid. The basic idea is that, in diagrams representing elements of
the Brauer monoid, we saw each line joining two dots as a two dimensional thing; it neither passed
under or over each line it crossed. In Tangles and the BMW monoid we imagine the lines as little
pieces of string which join rows of dots in three-dimensional space. Thus whether they pass under
or over each other is important.

Because over and under crossings are important there is no easy way to represent elements as
partitions of sets etc. So we define a n-tangle to be a picture in the plane in which 2 rows of n dots
are joined by lines such that each line connects two dots and every dot is joined to precisely one
line. For example the following is a 5-tangle:

6



Since an element of the tangle monoid is defined to be a picture we need a simple way to tell if two
tangles are “essentially the same”. By “essentially the same” we mean that if we constructed the
two tangles physically could we make one identical to the other by moving the bits of string about
without cutting or retying. It turns out that the following two identities (known famously as the
Reidemeister moves of types II and III) very nearly reflect our physical notion of “essentially the
same”:

(R2)

(R3)

So if it is possible to transform one tangle into the other using only the above Reidemeister moves
(or any rotation of them) in a local portion of the plane then we regard them as equivalent. We
then define Tn to be the set of all possible tangles on 2n dots modulo the equivalence relation
generated by R2 and R3.

The move from the set of all pictures to equivalence classes of pictures occasionally provides some
difficulties when we want to talk about pictures on a very basic level. Thus it is helpful to define
simple ways to move between pictures and and elements of the equivalence class. We write tp for
a representative picture of t ∈ Tn. If no sequence of Reidemeister moves exist that will reduce the
number of crossings of tp we say that tp is a nice picture of t. And, given a picture p we write p for
the equivalence class of which p is a member. We also write p ∼ q if p and q are equivalent under
Reidemeister moves. Thus if tp ∼ p then t = p.

The astute reader may have noticed that the relations allowed under the Reidemeister moves doe
not entirely cover our physical conception of “essentially the same”. We would physically expect
to be able to untangle a self-intersecting loop:

However it is not possible to achieve this with the two Reidemeister moves given above. (This move
is the missing Reidemeister of type I). It turns out that the extra structure given by not allowing
ourselves to untangle self-intersecting loops is important.

Since the set of tangles Tn is a generalisation of the Brauer monoid, we want to define multiplication
by concatenation. However, when we try to do this we run into problems. Recall that, disregarding

7



closed loops, the Brauer monoid was finite with (2n)!! elements. However, Tn is infinite even when
closed loops are ignored. It is very easy to get an infinite submonoid of Tn. In the case n = 2
consider the following powers of x in Tn:

if x = then x2 = and x3 =

Clearly xi 6= xj if i 6= j and so Tn has an infinite number of elements. However these elements
don’t present too much of a problem because then all occur as powers of one element. That is, even
though the submonoid generated by x is infinite it is finitely generated. However the full monoid is
not even finitely-generated.

To get around this problem of finite presentation we only consider a submonoid of Tn. We call an
element d ∈ Tn reachable if it can be expressed as a product of finitely many si, s

−1
i and ei’s where

the si’s, s−1
i ’s and ei’s are:

si = for 1 ≤ i ≤ n− 1

s−1
i = for 1 ≤ i ≤ n− 1

ei = for 1 ≤ i ≤ n− 1

Lemma 1.3. The set of reachable elements of Tn, with multiplication defined by concatenation
form a finitely generated monoid, the Birman-Murakami-Wenzl or BMWn monoid.

Proof. BMWn is finitely generated by definition. To show associativity it is enough to show that
any three elements chosen from {si} ∪ {s−1

i } ∪ {ei} satisfy associativity. This is straightforward
and will not be shown. Lastly, to see that BMWn has an identity let d ∈ BMWn be arbitrary, and
let dp be a picture or d. Then we can apply a continuous transformation to dp to see that:

dp ∼
. . .

dp

∼
dp

. . .

8



And hence idBMW d = d idBMW = d with:

idBMW = . . .

1 2 3 n

There are two very important functions between the Brauer and BMW monoids. The first function
φ “flattens” an element of BMWn by throwing away over and under crossings. Define φ : BMWn →
Bn by {i, j} ∈ φ(t) if i is joined to j in t ∈ BMWn. The second function, called the trace of d ∈ Bn,
provides a means of “lifting” an element d ∈ Bn to BMWn. To form the trace of an element d ∈ Bn

we draw the edges from left to right across the top and then left to right across the bottom lifting
the pen briefly when we cross a line that has already been drawn. For example if:

d = then Td =

1.3 The Monoid Algebras of Bn and BMWn

An algebra is an R-module M together with some rule that allows multiplication of elements.
A simple example of an algebra is the complex numbers C considered as a vector space over R
with multiplication defined by (a + ib)(c + id) = ac − bd + i(ad + bc). It is often inconvenient
(and impossible if our module has infinite rank) to specify multiplication in terms of two arbitrary
elements of the module as we have just done. Instead it is convenient to specify generators and
relations. For example, we could say that the complex numbers are an R-algebra on generators
1 and i with defining relation i2 = −1. Given the product (a + ib)(c + id) we expand to get
ac + iad + ibc + i2bd and then apply the relation to get ac− bd + i(ad + bc).

As the number of generators grows we need to specify more and more relations in order to keep
the rank of the module finite. One convenient situation occurs when we use a group, monoid or
semi-group as a basis for a free R-module. Because we already know how elements multiply in the
group, monoid or semi-group there is no need to specify any relations at all; we just specify the
group, monoid or semi-group together with the ring R. To multiply two elements we expand the
product and apply the group, monoid or semi-group multiplication. In the case of a monoid this
construction is known as the monoid algebra and is denoted RM where R is the ring and M is the
monoid. For example, consider the symmetric group Sym2 which has two elements: 1 and σ where
σ2 = 1. Since Sym2 is a group it is a monoid and so we can form the monoid algebra CSym2. We
have:

(a + bσ)(c + dσ) = ac + adσ + bcσ + bdσ2

= (ac + bd) + (ad + bc)σ (Since σ2 = 1)

The purpose of forming the algebra of a group or monoid is to further understand the structure of
the group or monoid. So often it is worthwhile to choose the ring over which the algebra is defined
carefully as it is often possible to translate certain structural features of the monoid into features
of the ring over which the algebra is defined. For example, in the case of Bn, closed loops presented

9



a problem and caused the monoid to be infinite. We might hope to find a ring and some relation
which removes the difficultly introduced by closed loops. Note that if we use a polynomial ring
R[x] together with the relation:

= x

Then we can use the exponent of x to count the number of closed loops of an element d ∈ Bn.
For example if d ∈ Bn has four closed loops and d′ is the same as d except with the closed loops
removed then d = x4d′

It is conventional to choose R = Z and so the ring over which we define the Brauer algebra is Z[x].
As an example we expand a product in Z[x]B3:

((x2 + 1) + 14 )(x + ) =

= x(x2 + 1) + (x2 + 1) + 14x + 14

= x(x2 + 1) + x(x2 + 1) + 14x2 + 14

= 2x(x2 + 1) + 14(x2 + 1)

We have already seen that |B̃n| = (2n)!! and it follows that Z[x]Bn has rank (2n)!!.

The monoid algebra construction for BMWn is more complicated. We have already seen that
BMWn is infinite and so we cannot hope that the monoid algebra of BMWn will have finite rank
unless we add some extra relations. The goal is to add enough relations so that the module will
have finite rank but not add so many that we loose all of the structure of the BMWn monoid. The
following relations probably seem quite arbitrary initially:

= + (q − q−1) − (q − q−1) (Untangling)

= r (Self-Intersection I)

= r−1 (Self-Intersection II)

= x (Closed Loop Removal)

What we mean by these relations is that we can alter any tangle in a local portion of the picture
by these identities. For example:

= +z −z

where z = q − q−1.

10



We can also use these identities to get a relation between x, r and q:

r =

= + (q − q−1) − (q − q−1)

= r−1 + x(q − q−1) − (q − q−1)

∴ r − r−1 = (q − q−1)(x− 1)

So it makes sense to define the ring over which we want to build the monoid algebra of BMWn to
be A = Z[x, q, q−1, r, r−1]/((r − r−1) + (q − q−1)(1 − x)). It is unfortunate that in the literature
there is no distinction in the notation for the BMWn algebra ABMWn and the BMWn monoid.
However once we have defined the BMWn algebra there is rarely a need to refer again to the BMWn

monoid.

Notice also that for special values of q, r ∈ C the BMWn algebra can be made to retain or abandon
various structural features. For example if r = 1 then the self-intersection relations become:

= =

which is the Reidemeister move of type I. If q is also set to 1 then the untangling relation becomes:

=

and so if q = r = 1 then BMWn is just the Brauer algebra Z[x]Bn.

We next want to state and prove the BMW Basis theorem which says that the traces of the Brauer
diagrams { Td | d ∈ Bn} form a basis for BMWn. However before we can state the theorem we
need to introduce a length function `′ on BMWn.

To formally define the length function `′ : (BMWn)monoid → N we first define the crossings function
c. If p is a picture of a tangle we define c(p) to be the number of crossings of p. For example if:

p =

then c(p) = 5. Clearly c(p) depends on our choice of representative from the equivalence class,
since we can apply the Reidemeister move of type II any number of times to add 2 to c(p) each
time. For this reason we define `′(t) = min{c(p) | p ∈ t} (recall that t ∈ Tn is an equivalence class
of tangles). In other words, given a tangle t ∈ Tn we look at all possible pictures of it and count
the number of crossings in each picture, `′(t) is the minimum of this number.

Lemma 1.4. Let d and t be elements of the Brauer and BMW monoids respectively. Then `(d) =
`′(Td) and `(φ(t)) ≤ `′(t).

11



Proof. We first show that `(φ(t)) ≤ `′(t). Let `(φ(t)) = a. This means that there are a pairs of
{i, j}, {k, l} in φ(t) such that i < k < j < l. But if i is joined to j in φ(t) then i must be joined
to j in t. Hence there are at least a pairs of dots {i, j}, {k, l} in t such that i < k < j < l. Hence
`(φ(t)) ≤ `′(t). Now it is clear that `′(Td) ≤ `(d) (this can be seen by tracing a nice diagram of d).
But also φ(Td) = d and so `(d) ≤ `′(Td) (from above) and so `′(Td) = `(d).

Because of the relations above we denote `′ by ` from now on. We can now state the main theorem:

BMW Basis Theorem. Let Z[x]Bn be the Brauer algebra on 2n dots and BMWn be the algebra
as defined above. Then BMWn is a free module of rank (2n)!! and {Td | d ∈ Bn} is a basis for
BMWn, moreover there exists a length function, `, on the BMW monoid such that `(Td) = `(d)
and:

t =
∑

`(d)≤`(t)

λdTd λd ∈ A

for all reachable tangles t ∈ T .

It will take us a little while to prove this result. We first make an observation that in applying the
untangling relation above, there is no chance of introducing a tangle which has a higher number of
crossings than the tangle we started with. To see this let t ∈ Tn be a reachable tangle and let p be
a picture of t such that `(t) = c(p). Then if we let p′ be the picture obtained from p by replacing
a crossing ( or ) with a or then c(p′) < c(p). Note that this implies that if t′ is the
tangle of which p′ is a representative then `(t′) < `(t). In other words, in applying the untangling
relation we only ever introduce tangles whose number of crossings are either equal or less than the
number of crossings in the original tangle.

The following two lemmas are important:

Lemma 1.5. If t ∈ Tn is reachable and has double or self-intersection then it is possible to write
t =

∑
i λiti with λi ∈ A and `(ti) < `(t) for all i.

Proof. Let t ∈ Tn be reachable and have a self-intersection. Let p be a picture of t such that
`(t) = c(p). Now we can focus on a vertex l which has a self-intersection and move around the loop
applying the untangling relation whenever l passes over a strand. Thus we can write:

t = t′ +
∑

i

λiti with `(ti) < `(t) and λi ∈ Z[q − q−1]

with t′ such that every strand that crosses the loop of l passes over l. We can then apply Reide-
meister moves of types II and III to isolate the loop. It is now possible to write t′ = rs or t′ = r−1s
with `(s) < `(t′) by the self-intersection relations. Hence we have:

t = λs +
∑

i

λiti with `(ti) < `(t), λi ∈ Z[q − q−1] and λ ∈ Z[r, r−1]

=
∑

i

γiti with γi ∈ A and `(ti) < `(t) for some ti and γi

12



A very similar process yields such an expression for t ∈ Tn with a double intersection: We concen-
trate on the “loop” formed by the double intersection and move around it applying the untangling
relation so that every strand which crosses into the loop crosses over. This allows us to write:

t = t′ +
∑

i

λiti with `(ti) < `(t) for all i

We then apply the Reidemeister moves of types II and II to see that t′ is equivalent to a tangle
with the double intersection by itself. There are then two possibilities: either we can apply the
Reidemeister move of type II to remove double intersection or we can’t. If we can the we see that
t′ ∼ t′′ with c(t′′) = c(t′). Hence it is possible to write:

t =
∑

i

γiti with γi ∈ A and `(ti) < `(t)

On the other hand, if we can’t apply the Reidemeister move we can apply the untangling relation
to one of the double intersections to write:

t′ = t′′ + (q − q−1)t1 − (q + q−1)t2 with `(t1), `(t2) < `(t)

We can then apply the Reidemeister move of type II to see that t′′ ∼ t′′′ with c(t′′′) = c(t′′) − 2.
Hence:

t = t′′′ + (q − q−1)t1 − (q − q−1)t2 +
∑

i

λiti

=
∑

i

γiti with γi ∈ A and `(ti) < `(t)

We illustrate this process with an example. Consider the following tangle with a double intersection:

t =

We can repeatedly apply the untangling relation to write:

t = +
∑

i

λiti with `(ti) < `(t) for all i

And we can apply the Reidemeister moves of types II and III to show that:

∼

13



And lastly:

= + (q − q−1) − (q − q−1)

Hence:

t = + (q − q−1) − (q − q−1) +
∑

i

λiti

Which is the expression required by the lemma.

Lemma 1.6. If t ∈ Tn has no double or self-intersection then it is possible to write t = Tφ(d) +∑
i λiti with λi ∈ A and `(ti) < `(t) for all i.

Proof. Let t be a tangle without double or self-intersection. Moving from left to right across the
top and then left to right along the bottom we can follow each strand applying the untangling
relation at any point at which the strand we are following passes below another. Repeating this
process across the whole tangle allows us to write:

t = t′ +
∑

i

λiti with `(ti) < `(t)

Now t′ is uniquely determined by φ(t′)(= φ(t)) and the property that a strand linking i to j passes
over a strand linking k to m if and only if i < k, so we can conclude that t′ = Tφ(t). Hence:

t = Tφ(t) +
∑

i

λiti with `(ti) < `(t)

The proof is now relatively straightforward:

Proof of BMW Basis Theorem. Note that to prove the result we only need to show that we can
express any reachable t ∈ Tn as a linear combination of the {Td | d ∈ Bn}. We prove this result by
induction on `(t). The result is trivial if `(t) = 0 since t = Tφ(t) so assume that for all t such that
`(t) < k we can write:

t =
∑

`(d)≤`(t)

rd,tTd

Now let s ∈ Tn be reachable and assume that `(s) = k. If s has no self or double intersection we
can write:

s = Tφ(s) +
∑

i

λiti

but since `(ti) < `(s) = k by induction we can write:

ti =
∑

`(d)≤`(ti)

rd,tiTd

14



for all i. Hence:

s = Tφ(s) +
∑

i

λi

∑
`(d)≤`(ti)

rd,tiTd

=
∑

i

γiTdi
for some γi ∈ A and di ∈ Bn

Similarly, if s has self or double intersection we can write:

s =
∑

i

λiti with `(ti) < `(s)

=
∑

i

λi(
∑

`(d)≤`(ti)

rd,tiTd)

=
∑

i

γiTdi
for some γi ∈ A and di ∈ Bn

An alternative proof of this result shows that:

BMWn ⊗A Z[x] ∼= Z[x]Bn

And hence BMWn ⊗A Z[x] has rank (2n)!! as a Z[x]-module. Since {Td | d ∈ Bn} is a linearly
independent set with (2n)!! elements they must form a basis. See [1].

15



2 Canonical Bases

2.1 The Main Theorem

In the have abstract setting we have a free Z[q, q−1]-algebra A with basis {τi}i∈Λ such that Λ is
interval finite (this just means that every interval {x ∈ Λ|x ≤ k} has a finite number of elements).
We also have an endomorphism – : Z[q, q−1] → Z[q, q−1] which sends q to q−1 together with a
Z–linear function ι : A → A satisfying:

(i) ι2 = idF

(ii) ι(av) = aι(v) (this is termed anti-linearity)

Such a function is called an involution.

It is an important problem of representation theory to find a “Canonical Basis” for the pair (A, ι).
A Canonical Basis is a unique basis {Ci} for A as a module satisfying the following three conditions:

(1) Cj ∈
∑

i≤j Z[q−1]τi for all j.

(2) ι(Ci) = Ci. That is, {Ci} is fixed by ι.

(3) π(Ci) = τi where π is the natural projection from A =
∑

Z[q, q−1]τi to
∑

Zτi.

The following theorem (from [2]) gives a particular set of conditions which guarantee the existence
of a Canonical Basis. The proof is given because it is the base of the algorithm that we construct
later on.

Main Theorem. Let A be a free Z[q, q−1]-module with basis {τi}, ι an involution on A and Λ
an interval finite poset. Now suppose that ι(τj) =

∑
i≤j rijτi with rjj = 1. That is, every ι(τi) is

expressible as a linear combination of elements all of which are less than τi (with the order inherited
from Λ). Then:

1.
∑

j rijrjk = δik (where δ is the Kronecker delta)

2. There exists a unique basis {Cj} for A such that ι(Cj) = Cj for all i and Cj =
∑

i≤j pijτi

with pij ∈ q−1Z[q−1] for i < j, pii = 1 and pij = 0 if j > i.

In other words a Canonical basis exists.

Proof. Since ι is an involution we have that ι2(τi) = τi. Also by assumption we can express

16



ι(τi) =
∑

j≤i rji we have:

τi = ι2(τi)

= ι(
∑
j≤i

rjiτi)

=
∑
j≤i

rjiι(τj)

=
∑
j≤i

rji

∑
k≤j

rkjτk

=
∑

k≤j≤i

rjirkjτk

Since {τi} is a basis for A we have
∑

k≤j≤i rjirkj = δki.

The second part of the Lemma (the existence of the unique basis {Cj}) is more difficult. We first
note that: ∑

j≤k

pjkτj = Ck = ι(Ck)

=
∑
j≤k

pjkι(τj)

=
∑
j≤k

pjk

∑
i≤j

rijτi

=
∑

i≤j≤k

rijpjkτi

∴ pik =
∑

i≤j≤k

rijpjk (1)

So that the existence of the unique basis {Cj} is equivalent to the system (1) having a unique
solution for all pik. We also note that, since rii = 1, pik − pik =

∑
i<j≤k rijpjk. So the polynomial

α(i,k] =
∑

i<j≤k rijpjk is of crucial importance in finding the pik’s.

We now show that α(i,k] + α(i,k] = 0. To do this we use induction on j ∈ Λ. So assume that the
pjk’s are known for all i < j ≤ k:

α(i,k] =
∑

i<j≤k

rijpjk

=
∑

i<j≤k

rijι(
∑

j≤s≤k

rjspsk) (By induction from (1))

=
∑

j≤s≤k

(
∑

i<j≤k

rijrjs)psk

=
∑

i≤s≤k

(
∑

i≤j≤s

rijrjs− riiris)psk

= −
∑

i≤s≤k

rispsk (Since
∑

k≤j≤i

rjirkj = δki)

= −α(i,k]

17



Now setting α(i,k] =
∑

j ajq
j we see immediately that α(i,k] + α(i,k] = 2a0 +

∑
j 6=0 ajq

j and so α(i,k]

has no constant term. Also:

0 =
∑

j

ajq
j +

∑
j

ajq
−j

=
∑

j

ajq
j +

∑
j

a−jq
j

=
∑

j

(aj + a−j)qj

So −aj = a−j . Furthermore:

α(i,k] =
∑
j<0

ajq
j +

∑
j>0

ajq
j

=
∑
j>0

a−jq
−j +

∑
j>0

ajq
j

=
∑
j>0

(−aj)q−j −
∑
j>0

(−aj)qj

So if we set pik =
∑

j>0−ajq
−j we see that pik ∈ q−1Z[q−1] and that pik is the required unique

solution to the system in (1).

The theorem which has just been proved has an important corollary. The first is that if A has finite
rank n (the only case that we will be considering) the above calculations can be reinterpreted as
statements about matrices over Z[q−1, q] and Z[q−1]:

Corollary 2.1. Let A be as above and let ι : A → A be an anti-linear involution described by
right-multiplication by a matrix R with respect to a basis {τi}. Then if R is unitriangular (that is
upper triangular with 1’s down the the diagonal) then RR = I and the system P = RP has a unique
solution for P ∈ Matn×n(Z[q−1]) under the conditions that P is unitriangular and pij ∈ q−1Z[q−1]
if i < j.

2.2 Applying the Main Theorem to the BMW Algebra

We are now in a position to apply the main theorem to the BMW Algebra. So we need to find an
involution ι on the BMW algebra such that ι(τi) = τi +

∑
τj<τi

λiτj for all i under some partial
order on {τi}.

It turns out that the involution that concerns us in the BMW algebra is the involution which
interchanges over and under crossings in the BMW monoid. For example, if we call this involution
ι then:

ι( ) =

Note that we still need to discover ι’s action on A. We can use the relations of the BMW algebra

18



to work out possibilities:

r−1 = (By self-intersection I)

= ι(r )

= ι(r) (Since ι is an involution)

∴ ι(r) = r−1

Similarly:

= + (q − q−1) − (q − q−1) (By the untangling relation)

∴ = + (ι(q)− ι(q−1)) − (ι(q)− ι(q−1))

∴ ι(q)− ι(q−1) = q−1 − q

So it makes sense to define ι(q) = q−1. Lastly:

ι(x) = ι( )
=
= x

So we define ι to be the involution on BMWn which interchanges over and under crossings in the
monoid and takes q to q−1, r to r−1 and x to x.

The reason that we can use this involution in conjunction with the main theorem is due to the
following theorem:

Theorem 2.2. Let d be an element of the Brauer monoid Bn and let ι be as above. Then it is
possible to write:

ι(Td) = Td +
∑

`(d′)<`(d)

λd′Td′

Proof. Let d ∈ Bn by arbitrary. Since Td has no self or double intersections (it is the trace of a
nice diagram) we can apply Lemma 1.6 and write:

ι(Td) = Tφ(ι(Td)) +
∑

i

λiti with `(ti) < `(ι(Td))

but φ(ι(Td)) = d and `(ι(Td)) = `(Td) = `(d) so we can write:

ι(Td) = Td +
∑

i

λiti with `(ti) < `(d)

Now, from the basis theorem we can write each ti as:

ti =
∑

`(e)≤`(ti)

re,tiTe

19



So:

ι(Td) = Td +
∑

i

λi(
∑

`(e)≤`(ti)

re,tiTe)

= Td +
∑

`(e)<`(d)

γeTe

for some γi ∈ A.

So we can use the main theorem with the BMW algebra, involution ι and partial order on the basis
Td ≤ Te if `(d) < `(e) or d = e to conclude that a canonical basis exists.

2.3 Cells

One of the principle motivations for finding canonical bases for an algebra A is that they provide
nice bases for expressing A as a direct sum of A-modules A = M1⊕M2⊕· · ·⊕Mn (such an expression
is called a representation). In this section we describe how to find the left, right and two-sided cells
of BMWn once a canonical basis has been found. These cells provide a straightforward means to
find representations of BMWn.

Central to the construction of the cells is the notion of a preorder. A preorder is a binary relation
≤ on a set B satisfying:

1. b ≤ b for all b (reflixivity)

2. a ≤ b and b ≤ c implies that a ≤ c (transitivity)

(For those familiar with the notion of a partial order it should be noted that a partial order is a
pre-order with the extra condition that a ≤ b and b ≤ a implies that a = b. A preorder is aptly
named because if ≤ is a preorder on a set B we can define an equivalence relation by a ∼ b if a ≤ b
and b ≤ a. Then ≤ becomes a partial order on B/ ∼.)

Given a canonical basis {Ci} for BMWn we say that Cx ≤L Cy if there exists a Cz such that the
coefficient of Cx in CzCy as a linear combination of the the {Ci} is non-zero. Similarly we say that
Cx ≤R Cy if there exists a Cz such that the coefficient of Cx in the product CyCz is nonzero. We
also say that Cx ≤LR Cy if Cx ≤L Cy or Cx ≤R Cy. For example, in BMW3:

C14C12 = ((−q−3 − q−1)x + ((q−2 + 1)r−1 + (q−3 + q−1) + (−q−2 − 1)r))C9+

+ (−q−2x + (q−1r−1 + (q−2 + 1)− q−1r))C14

And so we can conclude that C9, C14 ≤L C12 and C9, C14 ≤R C14. (See Section 3.2 for a justification
of the above calculation).

Lemma 2.3. ≤L is a preorder on {Ci}.

20



Proof. From Lemma 1.3 we know that idBMW (the picture identical to a nice diagram of the identity
of Bn) is the identity is the identity of BMWn. Also ι(idBMW) = idBMW. Now Cid, the canonical
basis element corresponding to Tid satisfies:

Cid =
∑

`(d)≤`(id)

rd,idTd with rid,id = 1

But under the partial order on Bn and BMWn idBMW is the only element less than or equal to
idBMW. Hence we can conclude that:

Cid = idBMW

Hence idBMW ∈ {Ci} where {Ci} is the canonical basis. Now idBMW Ci = Ci for all i and so
Ci ≤ Ci for all i.

Now assume that Cj ≤L Ci and Ck ≤ Cj . Then there exists a and b such that CaCi =
∑

m λmCm

and CbCj =
∑

n λnCn with λj 6= 0 and λk 6= 0. Now:

(CbCa)Ci = Cb(
∑
m

λmCm) with λj 6= 0

=
∑
m

λmCbCm

= · · ·+ λjCbCj + . . .

= · · ·+ λj

∑
n

λnCn + . . . with λk 6= 0

= · · ·+ · · ·+ λjλkCk + · · ·+ . . .

And hence there exists a Cd such that CdCi = · · ·+ λCk + . . . with λ 6= 0 and so Ck ≤L Ci and so
≤L is a preorder.

Given the preorder ≤L we can define an equivalence relation on {Ci}. We say that Ci ∼ Cj if
Ci ≤L Cj and Cj ≤L Ci. A set of equivalent basis elements Γ is called a left-cell of BMWn (we
similarly define right (≤R) and two-sided (≤LR) cells). As mentioned above, the importance of
cells is that they lead to representations of BMWn. If we set FΓ = A{Ci ≤L Γ} then FΓ is a left
ideal of BMWn.

21



3 Results for BMW2 and BMW3

3.1 BMW2

As an example we first calculate the canonical basis for BMW2 since the system is small enough to
solve by hand:

There are (2× 2)!! = 3× 1 = 3 Brauer diagrams:

b1 = b2 = b3 =

Their traces are:

Tb1 = g1 = Tb2 = g2 = Tb3 = g3 =

Now we have:

g1 = g1

g2 = g2

g3 = = g3 + (q − q−1)g2 − (q − q−1)h1

Hence:

R =

 1 0 −(q − q−1)
0 1 (q − q−1)
0 0 1


We rant to solve the system P = RP for:

P =

 1 p12 p13

0 1 p23

0 0 1


Hence:  1 p12 p13

0 1 p23

0 0 1

 =

 1 0 −(q − q−1)
0 1 (q − q−1)
0 0 1

  1 p12 p13

0 1 p23

0 0 1


=

 1 p12 p13 − (q − q−1)
0 1 p23 + q − q−1

0 0 1



22



We now can now reduce the problem to smaller equations:

p12 = p12

∴ p12 = 0

p23 = p23 − (q + q−1)

∴ p23 = −q−1

p13 = p13 + (q + q−1)

∴ p13 = q−1

So P =

 1 0 q−1

0 1 −q−1

0 0 1

 is the unique solution. We have found the canonical basis:

C1 = h1

C2 = h2

C3 = q−1h1 − q−1h2 + h3

Note that:

C3 = q−1h1 − q−1h2 + h3

= qh1 − qh2 + h3 + (q − q−1)h2 − (q − q−1)h1

= q−1h1 − q−1 + h3

= C3

So {C1, C2, C3} is indeed the canonical basis for BMW2.

3.2 BMW3

In the case of BMW3 the calculations are much more involved. The matrix involved has (2×3)!! = 15
rows and columns which necessitates solving 105 equations. For this reason a function was written
in MAGMA to assist in the calculation. Here is our algorithm in pseudocode:

function CalculateCanonicalBasis(R)
for i from (n− 1) down to 1 do

for k from (i + 1) to n do (1)
α(i,k] =

∑
i<j≤k rijpjk (2)

if α(i,k] = 0 then
pik = 0

else
pik =

∑
j>0−ajq

−j (3)
end if

23



end for
end for

end function

We make the following observations:

1 The two for loops have i moving from (n− 1) down to 1 and k from (i + 1) to n. This means
that we start in the bottom right hand corner of the matrix P and work our way up row
by row. Note that this progression is similar to the induction used in the proof of the main
theorem.

2 We use the same notation in the pseudocode to that of the proof of the main theorm. Note
that, from the observation above, all the pik’s are know for j > i and so it is possible to
calculate α(i,k].

3 This is the explicit form of the unique solution in the main theorem with α(i,k] =
∑

j ajq
j .

Just as in the case of BMW2 it is necessary to calculate the matrix of the involution before the
algorithm is applied. Here is the basis of traces for BMW3 (note that we have arranged the elements
so that gi ≤ gj implies that i ≤ j:

`(gi) = 0 `(gi) = 1 `(gi) = 2 `(gi) = 3

g1 = g6 = g12 = g15 =

g2 = g7 = g13 =

g3 = g8 = g14 =

g4 = g9 =

g5 = g10 =

g11 =

24



It is then a routine but lengthy process to calculate ι(gi) in terms of the gi for all i. To illustrate
the process we calculate ι(g13) (as usual z = q − q−1):

ι(g13) =

= + z − z

= + z − z + z − z ( + z − z )

= g13 + zg8 − zg6 + zg10 − zg7 − z2g3 + z2g1

Repeating this process for all the gi yields the following table of the involution:

g1 = g1

g2 = g2

g3 = g3

g4 = g4

g5 = g5

g6 = −zg1 + zg2 + g6

g7 = −zg1 + zg3 + g7

g8 = −zg3 + zg4 + g8

g9 = zg2 − zg5 + g9

g10 = zg2 − zg4 + g10

g11 = −zg3 + zg5 + g11

g12 = z2g1 − z2g3 − zg6 − zg7 + zg9 + zg11 + g12

g13 = z2g1 − z2g3 − zg6 − zg7 + zg8 + zg10 + g13

g14 = z2g2 + z2g3 − z2g4 − z2g5 − zg8 + zg9 + zg10 − zg11 + g14

g15 = (−z3 − z)g1 + z3g3 + zg4 + zg5 + z2g6 + z2g7 − z2g8 − z2g11 − zg12 − zg13 + zg14 + g15

Note that when this is hand calculated mistakes almost inevitably occur. However Corollary 2.1
states that RR = I which is useful in verifying that the involution has indeed been calculated
correctly. It is then possible to either hand calculate the canonical basis using the above algorithm
or implement it in a computer algebra program. In MAGMA (see B.1):

> CalculateCanonicalBasis(Matrix_ZZ_to_ZQ(InvoMatrix));

[ 1 0 0 0 0 q^-1 q^-1 0 0 0 0 q^-2 q^-2 0 q^-3]

[ 0 1 0 0 0 -q^-1 0 0 -q^-1 -q^-1 0 0 0 q^-2 -q^-1]

[ 0 0 1 0 0 0 -q^-1 q^-1 0 0 q^-1 -q^-2 -q^-2 q^-2 -q^-3]

[ 0 0 0 1 0 0 0 -q^-1 0 q^-1 0 0 0 -q^-2 0]

[ 0 0 0 0 1 0 0 0 q^-1 0 -q^-1 0 0 -q^-2 0]

[ 0 0 0 0 0 1 0 0 0 0 0 q^-1 q^-1 0 q^-2]

[ 0 0 0 0 0 0 1 0 0 0 0 q^-1 q^-1 0 q^-2]

[ 0 0 0 0 0 0 0 1 0 0 0 0 -q^-1 q^-1 -q^-2]

[ 0 0 0 0 0 0 0 0 1 0 0 -q^-1 0 -q^-1 0]

[ 0 0 0 0 0 0 0 0 0 1 0 0 -q^-1 -q^-1 0]

[ 0 0 0 0 0 0 0 0 0 0 1 -q^-1 0 q^-1 -q^-2]

[ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 q^-1]

[ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 q^-1]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -q^-1]

[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]

25



And hence the canonical basis is:

C1 = g1

C2 = g2

C3 = g3

C4 = g4

C5 = g5

C6 = q−1g1 − q−1g2 + g6

C7 = q−1g1 − q−1g3 + g7

C8 = q−1g3 − q−1g4 + g8

C9 = −q−1g2 + q−1g5 + g9

C10 = −q−1g2 + q−1g4 + g10

C11 = q−1g3 − q−1g5 + g11

C12 = q−2g1 − q−2g3 + q−1g6 + q−1g7 − q−1g9 − q−1g11 + g12

C13 = q−2g1 − q−2g3 + q−1g6 + q−1g7 − q−1g8 − q−1g10 + g13

C14 = q−2g2 + q−2g3 − q−2g4 − q−2g5 + q−1g8 − q−1g9 − q−1g10 + q−1g11 + g14

C15 = q−3g1 − q−1g2 − q−3g3 + q−2g6 + q−2g7 − q−2g8 − q−2g11 + q−1g12 + q−1g13 − q−1g14 + g15

3.3 Cells

Theoretically, calculation of the left cells is easy: we fix an i and left multiply by Cj for all j keeping
all of the resultant basis elements in a set Si. Then we have Cj ≤ Ci for all Cj ∈ Si. Repeating
this process for all i yields the relations of the preorder and the cells can be calculated.

For example, in BMW2 we have:

C1C1 = C1 C1C2 = C2

C2C1 = C2 C2C2 = xC2

C3C1 = C3 C3C2 = (q−1 − xq−1 + r−1)C2

C1C3 = C3

C2C3 = (q−1 − xq−1 + r−1)C2

C3C3 = (q−2x + ((−q−1 − q)r−1 + (−q−2 + 1)))C2 + (q−1 + q)C3

Hence C1, C2, C3 ≤L C1, C2 ≤L C2 and C2, C3 ≤L C3 and so the cells are {C1}, {C2} and {C3}.
The Hasse diagram looks like:

26



{C1}

{C3}

{C2}

However beyond BMW2 the computation required is substantial—simply multiplying C14 and C15
in BMW3 involves almost as much work as calculating the full table of the involution! For this
reason an algorithm was written in MAGMA to perform and simplify multiplication within the
algebra. This algorithm is outlined in Appendix B.2. Using this algorithm it is easy to calculate
the left cells:

> CalcAllCellRelations("left");

Calculating LEFT cell relations...

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 <= C1.

C2 C5 C9 <= C2.

C3 C4 C8 <= C3.

C3 C4 C8 <= C4.

C2 C5 C9 <= C5.

C2 C5 C6 C9 C10 C11 C12 C14 C15 <= C6.

C2 C3 C4 C5 C7 C8 C9 C10 C11 C13 C14 C15 <= C7.

C3 C4 C8 <= C8.

C2 C5 C9 <= C9.

C10 C11 C14 <= C10.

C10 C11 C14 <= C11.

C2 C5 C6 C9 C10 C11 C12 C14 C15 <= C12.

C2 C3 C4 C5 C7 C8 C9 C10 C11 C13 C14 C15 <= C13.

C2 C10 C11 C14 <= C14.

C2 C5 C9 C10 C11 C14 C15 <= C15.

Hence the cells are {C1}, {C2, C5, C9}, {C3, C4, C8}, {C6, C12}, {C7, C13}, {C10, C11, C14} and
{C15}. The Hasse diagram looks like:

{C2, C5, C9}

{C15}

{C10, C11, C14}

{C3, C4, C8}

{C12, C6} {C13, C7}

{C1}

���
�

�
���

HHH
H

H
HHH

��
��

HH
HH

HH
HH

Similarly for the right cells:

> CalcAllCellRelations("right");

Calculating RIGHT cell relations...

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 <= C1.

C2 C4 C10 <= C2.

27



C3 C5 C11 <= C3.

C2 C4 C10 <= C4.

C3 C5 C11 <= C5.

C2 C4 C6 C8 C9 C10 C13 C14 C15 <= C6.

C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C14 C15 <= C7.

C8 C9 C14 <= C8.

C8 C9 C14 <= C9.

C2 C4 C10 <= C10.

C3 C5 C11 <= C11.

C2 C3 C4 C5 C7 C8 C9 C10 C11 C12 C14 C15 <= C12.

C2 C4 C6 C8 C9 C10 C13 C14 C15 <= C13.

C8 C9 C14 <= C14.

C2 C4 C8 C9 C10 C14 C15 <= C15.

And so the Hasse diagram is:

{C2, C4, C10}

{C15}

{C8, C9, C14}

{C3, C5, C11}

{C6, C13} {C12, C7}

{C1}

�
���

���
�

H
HHH

HHH
H

���
�

HHH
H

HHH
H

It is now possible to calculate the two-sided cells. The Hasse diagram looks like:

{C1}

{C6, C7, C12, C13}

{C15}

{C2, C3, C4, C5, C8, C9, C10, C11, C14}

28



A Avenues for Further Work

A.1 A Closer Look at the Tangle Monoid

The tangle monoid Tn was introduced to motivate and provide a general framework for the BMW
monoid. It was stated in Section 1.2 that the tangle monoid is not finitely generated. It seems that
this is quite difficult to show. In trying to show this some terms from ring theory were useful (this
make sense since every ring is a monoid under multiplication). We say that d ∈ Tn is a unit if it is
invertible and that f, g ∈ Tn are associates if f = ug for some unit u ∈ Tn. We also say that f ∈ Tn

is irreducible if f is not a unit and if f = gh implies that either g or h is a unit. The following
lemma seems to provide an effective way to approach the problem:

Lemma A.1. Let M be a monoid that contains an infinite set of irreducible elements such that no
two are associates. Then M is not finitely generated.

Proof. Let {r1, r2, . . . } be the infinite set of irreducible elements and assume for contradiction that
M is finitely generated on generators {u1, u2, . . . , um, g1, g2, . . . , gn} with the ui units and the gi

non-units. Then each ri = ugi for some unit or product of units u (because if ri = ugigj then
ri = (ugi).gj which contradicts ri’s irreducibility). There are only finitely many generators which
implies that ri = urj for some i, j and unit u. But this contradicts the fact that none of the ri are
associates. Hence M is not finitely generated.

It is then a matter of showing that Tn has an infinite number of irreducible elements, no two
of which are associates. In classifying the units the following seemed true (although it evaded a
watertight proof):

Lemma A.2. An element d ∈ Tn is invertible if an only if it is expressible as a product:

d =
n∏

j=1

s
pj

ij
pj ∈ Z

with:

si = i ∈ {1, 2, . . . , (n− 1)}

s−1
i = i ∈ {1, 2, . . . , (n− 1)}

29



Idea for Proof. The implication one way is straightforward. If d =
∏n

j=1 s
pj

ij
then:

d(
1∏

j=n

s
−pj

ij
=

n∏
j=1

s
pj

ij
(

1∏
j=n

s
−pj

ij

= sp1
i1

sp2
i2

. . . spn

in
s−pn

in
. . . s−p2

i2
s−p1
i1

= id

Hence d is invertible and d−1 =
∏1

j=n s
−pj

ij
. The implication the other way seems difficult. One

important observation appears to be that if d ∈ Tn is invertible then there exists some sequence of
Reidemeister moves which show that a nice picture of id is equivalent to d concatenated with d−1.
Hence as pictures we have:

idp ∼ r1 ∼ r2 ∼ · · · ∼ rn ∼ dpd
−1
p

Where dpd
−1
p denotes the concatenation of d and d−1 as pictures. So, to prove the result, we ned to

show that any sequence of Reidemeister moves on idp can be translated into a statement about si’s
and s−1

i ’s. For example the second Reidemeister move translates into the fact that sis
−1
i = 1.

It seems that the following set is an infinite set of irreducible elements of T2, no two of which are
associates:

l2 = l3 = . . . ln =

To see that they are all irreducible the following general argument appears useful. Assume that
li = gh for some g, h ∈ T2. Then there exists some sequence of Reidemeister moves that take
gphp to li. But this implies that there exists a chain of Reidemeister moves that exhibits li as the
concatenation of gp and hp. Now the double-intersection cannot be split and so must appear either
above or below the central line in the concatenation. And so either g or h is a unit.

A generalisation appears possible for arbitrary n by considering analogues of l3, l5 etc. if n is odd
and l2, l4 etc if n is even.

A.2 Generalisation of the Software for Arbitrary n

Due to time constraints the MAGMA software was written with n = 3 hardwired in the code.
Most of the code wouldn’t require that much work before it would work for arbitrary n. However
some routines would provide some challenge. The two biggest challenges would be in rewriting the
StrandStep routine (the current implementation just enumerates all possibilities) and in getting
the basis of g′is there initially (this is also hard-coded in the current implementation). Note also that
the current software takes approximately 5 minutes to calculate all of the two sided cell-relations
and so some degree of optimisation would be necessary even for n = 4.

30



A.3 A Rougher Order on Bn

Given two partial orders ≤1 and ≤2 we say that ≤1 is rougher than ≤2 if a ≤1 b implies a ≤2 b but
there exists c, d such that c ≤2 d but c 
1 d. For a geometric interpretation one can imagine that
the Hasse diagram of ≤1 is equal to that of ≤2 except with some lines removed.

The partial order used by Fishel and Grojnowski ([1]) is not very rough in that two Brauer diagrams
d and e are comparable so long as `(d) 6= `(e). Jie Du has suggested that it might be interesting to
look at rougher orderings on Bn such that the BMW Basis Theorem and Theorem 2.2 still hold.

One rougher ordering which does not violate the theorems is to say the d ≤ e if it is possible to
transform e into d by replacing a number of crossings in a nice diagram with horizontal or vertical
loops. It would be interesting to see if this is the roughest possible ordering and whether a nice
charaterisation of this ordering exists in terms of generators.

31



B Implementation of the Algorithms in MAGMA

B.1 Calculating the Canonical Basis

// Almost all work is done over the ring of Laurent polynomials Z[q,q^-1]

// so we initialise it here. In magma there is no way that I know of of

// implementing Laurent polynomails, so we work in the ring of Laurent power

// series.

ZQ<q> := LaurentSeriesRing(Integers());

ZZ<z> := PolynomialRing(Integers());

// Functions from ZZ to ZQ.

ZZ_to_ZQ := hom < ZZ -> ZQ | (q-q^-1) >;

Matrix_ZZ_to_ZQ := function (M);

MQ := Matrix([[ ZZ_to_ZQ(M[i,j]) : j in [1..Ncols(M)] ] : i in [1..Nrows(M)] ]);

return MQ;

end function;

// Calculates a canonical basis of an involution represented by a matrix M.

CalculateCanonicalBasis := function(M);

error if Ncols(M) ne Nrows(M), "ERROR: Matrix must be square.";

error if M*MatrixInvolution_q(M) ne IdentityMatrix(ZQ,Nrows(M)),

"ERROR: The matrix must be satisfy M*Mbar = I.";

n := Nrows(M);

P := IdentityMatrix(ZQ,n);

for i in [n-1..1 by -1] do

for k in [i+1..n] do;

Sum := &+[ M[i,j]*Involution_q(P[j,k]) : j in [i + 1..n]];

Coeffs, low_power := Coefficients(Sum);

if low_power eq 0 then P[i,k] := 0;

else P[i,k] := &+[ q^(i)*Coeffs[i-low_power+1] : i in [low_power..-1]];

end if;

end for;

end for;

return P;

end function;

B.2 Calculating the Cells

The whole file is too long to include in full. The following initialisation of variables are ommited:

g[i] These are elements of the the standard trace basis on page 24 in terms of the si’s and
ei’s.

c[i] These are the elements of the canonical basis in terms of the si’s and ei’ s.

32



The following functions are easy to implement:

SimplifyMonoid This function takes an element over BMW3 and simplifies it using the
simplification rules within the monoid. It is handy to use MAGMA ’s
RewriteMonoid here.

FullySimplify This function takes a set of relations as well as an element of BMW
and simplifies it as much as possible based on the relations and the
SimplifyMonoid routine.

MoveUpToG Moves one step from BMW up to the polynomial ring
G[g1, g2, . . . , g15].

MoveUpToC Moves one step from G up to the polynomial ring C[C1, C2, . . . , C15].

CalcAllCellRelations Goes through the algorithm described in Section 3.3.

// This file provides routines to compute the cells of BMW_n.

MQ<s1,S1,s2,S2,e1,e2> := Monoid < s1,S1,s2,S2,e1,e2 | s1*S1, S1*s1, s2*S2, S2*s2, s1*s2*s1=s2*s1*s2 >;

// Prepare the rewrite monoid...

RMQ<t1,T1,t2,T2,f1,f2> := RWSMonoid(MQ : MaxRelations := 100);

// Establish the monoid simplification function.

MQ_to_RMQ := func < x | RMQ!Eltseq(x) >;

RMQ_to_MQ := func < x | MQ!Eltseq(x) >;

Simp := func < x | RMQ_to_MQ(MQ_to_RMQ(x)) >;

// Create the Algebra

Q<q> := LaurentSeriesRing(Integers());

R<r> := LaurentSeriesRing(Q);

A<x> := PolynomialRing(R);

BMW<a1,A1,a2,A2,b1,b2> := FreeAlgebra(A,MQ);

// Once we have everything we work in two polynomial rings which

// represent our work over the basis of traces and over the canonical basis.

// The structure lost by the fact that the polynomial ring is commutative

// doesn’t matter since we do all the necessary multiplication in BMW.

// The polynomial rings merely facilitate our expression of products in terms

// of the canonical bases. (To compute the cells).

// Trace basis ring:

G<g1,g2,g3,g4,g5,g6,g7,g8,g9,g10,g11,g12,g13,g14,g15> := PolynomialRing(A,15);

// Canonical basis ring:

C<C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15> := PolynomialRing(A,15);

// LOAD THE RELATIONS:

// Self Intersection:

SI := [];

SI[1] := a1*b1=r^-1*b1;

SI[2] := b1*a1=r^-1*b1;

// etc...[omitted]

// Double Intersection

DI := [];

DI[1] := a1^2 = 1 + (q-q^-1)*a1-(q-q^-1)*r^-1*b1;

// etc...[omitted]

33



// Does a single step within and element of the BMW monoid and reports:

// where it got to, whether it changed direction (ie through and ei) and

// whether it passed under a strand (this is generally bad).

StrandStep := function( Strand, Depth, Down, Element);

// Make sure that we’re not at the end of the line.

if Down eq -1 then

if Depth eq 1 then

return Strand, Depth, Down, 1;

end if;

else

if Depth eq (#Element+1) then

return Strand, Depth, Down, 1;

end if;

end if;

// Get the correct letter.

seq := Eltseq(Element);

if Down eq 1 then

CurrentLetter := MQ!([seq[Depth]]);

else

CurrentLetter := MQ!([seq[Depth-1]]);

end if;

// Now go through _all_ possibilities (not very elegant programming!!!).

CrossAbove := [];

if Down eq 1 then

case Strand:

when 1:

case CurrentLetter:

when s1: Strand:=2; Depth+:=1; Down:=1; CrossAbove:=[Depth-1];

when s2: Strand:=1; Depth+:=1; Down:=1; CrossAbove:=[Depth-1];

when S1: Strand:=2; Depth+:=1; Down:=1; CrossAbove:=[Depth-1, Eltseq(s1)[1], Eltseq(e1)[1], -1];

when S2: Strand:=1; Depth+:=1; Down:=1; CrossAbove:=[Depth-1];

when e1: Strand:=2; Down:=-1; CrossAbove:=[Depth];

when e2: Strand:=1; Depth+:=1; Down:=1; CrossAbove:=[Depth-1];

end case;

//...

// There was a lot of code here that has been omitted. It just goes through all the possibilities.

//...

end case;

end if;

return Strand, Depth, Down, CrossAbove;

end function;

// Writes and element as T_d + \sum { \lambda_i e_i } where all the e_i are shorter than

// T_d. A very important routine. (d is in the Brauer monoid and T is the trace function).

TraceElement := function (Element)

ProcElt := Element; Chaff := BMW!0;

BlockArray := [0 : i in [1..#Element]];

StrandArray := [0 : i in [1..6]];

CurStartStrand := 1;

Strand := CurStartStrand; Depth := 1; Dir := 1;

StrandArray[CurStartStrand] := 1;

repeat

34



OldStrand := Strand;

OldDepth := Depth;

Strand, Depth, Dir, Cross := StrandStep(Strand, Depth, Dir, ProcElt);

// Make sure that we’re not at the end of a strand.

if (OldStrand eq Strand) and (OldDepth eq Depth) then

// Update the strand that we ended up on.

if Dir eq -1 then // We’ve ended up the top.

StrandArray[Strand] := 1;

else // We’ve ended down the bottom.

StrandArray[3+Strand] := 1;

end if;

// Get a new strand to start on and make sure there is one:

CurStartStrand := Index(StrandArray,0);

if CurStartStrand eq 0 then

continue; // We’ve finished.

end if;

// Mark it as used:

StrandArray[CurStartStrand] := 1;

Strand := CurStartStrand;

if Strand le 3 then

Depth := 1;

Dir := 1;

else

Depth := #Element+1;

Strand := Strand - 3;

Dir := -1;

end if;

continue;

end if;

// Did we cross under???

// Reminder:

// Cross[1] = depth at which under cross occurred.

// Cross[2] = element that fixes the problem (should be an si or an Si).

// Cross[3] = appropriate horizontal element for the relation.

// Cross[4] = whether the relation appears in its normal or rotated form.

if (#Cross ne 1) then // there’s been an under crossing

if (BlockArray[Cross[1]]) eq 0 then

seq := Eltseq(ProcElt);

Insert(~seq, Cross[1], Cross[1], [Cross[2]]);

Chaff +:= Cross[4]*((q-q^-1)*BMW!(MQ!(Remove(seq,Cross[1])))-

(q-q^-1)*BMW!(MQ!(Insert(seq,Cross[1],Cross[1],[Cross[3]]))));

ProcElt := MQ!(seq);

// Should this block be marked as OK??

if OldStrand ne Strand then

BlockArray[Cross[1]] := 1;

end if;

end if;

else

if OldStrand ne Strand then // We’ve crossed a crossing without going under. So we should mark it as OK.

BlockArray[Cross[1]] := 1;

end if;

end if;

until 0 notin BlockArray;

35



return ProcElt, Chaff;

end function;

// This is the full simplification algorithm. Given an Element it reduces it until

// it is a product of traces of (not necessarily nice) diagrams in the Brauer monoid.

// It is sometimes necessary to give it further simplification.

TraceReduce := function (Element)

input := Element; output := BMW!0;

repeat

input := FullySimplify(input, Rels);

support := Support(input);

CurElt := support[1];

CurCoeff := MonomialCoefficient(input,CurElt);

// Check that there are other elements in the support;

if #support eq 1 then

input := BMW!0;

else

input := &+[ MonomialCoefficient( input, support[i]) * BMW!(support[i]) : i in [2..#support] ];

end if;

Wheat, Chaff := TraceElement(CurElt);

output +:= CurCoeff*BMW!(Wheat);

input +:= CurCoeff*BMW!(Chaff);

until input eq BMW!0;

return output;

end function;

36



References

[1] F. Fishel and I. Grojnowski, Canonical Bases for the Brauer Centralizer Algebra, Mathematical
Research Letters 2, 15-26 (1995).

[2] J. Du, B. Parshall and J. P. Wang, GLn: Quantum, Rational and Discreet, unfinished.

[3] H. Barcelo and A. Ram, Combinatorial Representation Theory, in Math. Sci. Res. Inst. Publ.,
38 , Cambridge Univ. Press, Cambridge, 1999, pp. 23–90.

37


