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Symmetry and the notion of a group: 1832 - 1920.



Symmetry is all around us.

We have been observing and studying symmetry for millennia.

The set of symmetries form a group.

We owe the term group(e) to Galois (1832).



Galois theory:

f P Qrxs x2 ` x ` 1 “ x3´1
x´1

tαiu roots of f

‚

‚

‚
α1

‚ 0

‚
α2

Form K “ Qpα1, . . . , αnq Qpe2πi{3q.

GalpK ,Qq :“ AutpQpα1, . . . , αmqq (“Galois group”)

GalpK ,Qq acts on tα1, . . . , αmu.

Galois theory: This action tells us everything about f and its roots.



H Ă G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois’ death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory



Cayley, On the theory of groups, as depending on the symbolic equation Θn “ 1,

Philosophical Magazine, 4th series, 7, 1854.

Cayley (1878): “A group is defined by the law of composition of its
members.”



pg1, g2q ÞÑ g1g2,

gh “ gh1 ñ h “ h1

hg “ h1g ñ h “ h1

g1pg2g3q “ pg1g2qg3,

G is finite.
ñ existence of inverses

– Frobenius, Neuer Beweis des Sylowschen Satzes, Crelle, 1884.
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Surely the definition of group is one of the most intuitive and
useful in all of mathematics.

Why did it take us so long to realize the importance of this notion?



Speculation: In Galois theory we first see the importance of the
structure of the symmetry, or what we now call group theory.

That is, we move from the usefulness of one symmetry to the
study of the set of all symmetries.

It was Galois who first asked:

Is a finite group G simple?

A group G is simple if it has no non-trivial normal subgroups.

A subgroup H Ă G is normal if it is the kernel of some homomorphism G Ñ G 1.

Jordan-Hölder theorem: finite simple groups are the building blocks of all finite groups.



We also see this is Klein’s Erlangen program (1872):

Geometry is its group of symmetries.

This idea also pervades 20th and 21st century theoretical physics.



Representation theory is the study of linear group actions:

A representation of a group G is a homomorphism

ρ : G Ñ GLpV q

for some vector space V .

A representation is the same thing as a linear action of G on V .

A representation is irreducible if the only subspaces U Ă V which
are stable under the action of G are t0u Ă V and V itself.

There is a Jordan-Hölder theorem: the irreducible representations
are the building blocks of all representations.



A representation theorist’s strategy:

problem involving a
group action

G ýX

problem involving a
linear group action

G ýkrX s

“decomposition” of
problem
G ý‘Vi



Three examples of mathematics in light of representation theory



Example 1: Finite group actions on sets.

For a fixed finite group G these two problems are “the same”:
1) classify finite sets with G -action;

2) classify subgroups H Ă G up to conjugacy.

The equivalent problems turn out to be extremely complicated.
Because every finite group is a subgroup of a symmetric group, a
solution to (2) would be something like a classification of all finite

groups. There are more than 30 papers on the classification of
maximal subgroups of the monster simple group.

However the analogous linear problem “classify C-vector spaces
with linear G -action” is representation theory. Here we have a

satisfactory answer for many groups.



Example 2: The circle and the Fourier transform.

Let S1 “ tz P C | |z | “ 1u. Then S1 is a (Lie) group.

For any m P Z we have a one-dimensional representation of S1 via:

S1 P z ÞÑ zm P C˚ “ GL1pCq.

In fact, these are all irreducible representations of S1!



Now we consider: S1 ýS1.

We linearize this action and consider for example

S1 ýL2pS1,Cq.

Now our irreducible characters zm belong to the right hand side.

Moreover, as Hilbert spaces:

L2pS1,Cq “ ˆàCzm

If we identify S1 “ R{Z then the functions zm become the
fundamental frequencies λ ÞÑ e2πimλ of Fourier analysis.

Moral: The decomposition of L2pS1,Cq into irreducible
representations is the theory of Fourier series.

Similarly, the Fourier transform can be explained in terms of
representations of pR,`q, spherical harmonics in terms of

representations of SOp3q ýS2, . . .



Example 3: Rational points and Fermat’s last theorem.

Suppose we want to find rational solutions to an equation X like:

y2 “ x3 ´ x2 ´ 24649x ` 1355209

Let us write X pCq for the solutions with x , y P C, X pQq for
solutions x , y P Q etc.



It turns out that X pCq is a Riemann surface of genus one:



The points in an algebraic closure X pQq are also “easy” (think of
the stars in the night sky):



The tricky point is to find the rational points X pQq:



Let GalpQq denote the absolute Galois group (automorphisms of
Q Ă Q). Group theory interpretation:



Diophantine geometry can be encoded in questions like:

Understand the GalpQq-action on X pQq.

But we will probably never understand the GalpQq sets X pQq.



However representation theory suggests that we should cook up a
linear object out of the action of GalpQq out of X pQq.

It turns out that we can do this, and it is extremely profitable. The
short version: GalpQq acts in a very interesting way on

H1pX ;Q`q “ Q2
` . (Can be thought of as something like a tangent

space.)

.



This is the structure behind the proof of Fermat’s last theorem:

1. start with a solution xn ` yn “ zn with x , y , z P Z, n ą 2;

2. build from this solution a strange elliptic curve E (the “Frey
curve”);

3. observe that such a curve would give a very strange
G -representation H1pE ;Q3q (Frey, Serre, Ribet);

4. show that such a G -representation cannot exist (Wiles,
Taylor-Wiles).



Moreover the Langlands program gives us a vast array of theorems
and conjectures linking representations of Galois groups coming

from Diophantine problems (like the rational points question
above) to analysis and automorphic forms.

A beautiful introduction to these ideas:

R. P. Langlands, Representation theory: its rise and its role in
number theory. Proceedings of the Gibbs Symposium (New Haven, CT, 1989)



Representations of finite groups and the character table



Basic theorems in the representation theory of a finite group G :

1. any C-representation of G is isomorphic to a direct sum of
irreducible representations;

2.

#

"

irreducible
C-representations of G

*

{–

“ #

"

conjugacy
classes in G

*

.

3. Any finite dimensional representation ρ : G Ñ GLpV q is
determined (up to isomorphism) by its character:

χρ : G Ñ C : g ÞÑ Tr ρpgq.



Hence, we know (almost) everything about the C-representations
of a group once we know the characters of the irreducible

representations of our group G .

χphgh´1q “ Trpρphgh´1qq “ Trpρphqρpgqρphq´1q “ Trpρpgqq “ χpgq.

Hence χ is a function on the conjugacy classes of G .

All of this information can be conveniently displayed in the
character table of G . The rows give the irreducible characters of G

and the columns are indexed by the conjugacy classes of G .

The character table of G is the C-linear shadow of G .



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the

tetrahedron.

Frobenius, Über Gruppencharaktere, S’ber. Akad. Wiss. Berlin, 1896.



Now G “ S5, the symmetric group on 5 letters of order 120:



Conway, Curtis, Norton, Parker, Wilson, Atlas of finite groups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985.



But if you’re not yet convinced you are not alone!



– Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius’ definition of the character.)



– Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius’ definition of the character table.)



What led Frobenius to his marvellous definition?

As well as an inherent fascination in finite groups, Frobenius was
influenced by questions from number theory.

From Dedekind’s account of Dirichlet’s lectures Vorlesung über
Zahlentheorie (1863), Frobenius was also aware of the importance

of characters of abelian groups.

These occur in the Dirichlet L-function:

Lps, χq :“
ÿ 1

χpnqn´s

(Key to Dirchlet’s theorem on primes in arithmetic progressions.)

Characters are also throughout Gauß’ theory of quadratic
reciprocity, composition of forms, . . .



First paragraph of Über Gruppencharaktere.



Remarkably, when Frobenius begun his study of the character table
he didn’t yet know the connection to representation theory!

He was attempting to answer a question of Dedekind, which
Dedekind had stumbled upon in 1880 (!).

Last paragraph of introduction to Über Gruppencharaktere.



Dedekind’s observation was the following:

Take a finite group G “ tg1, g2, g3, . . . , gnu.

We will take G “ S3:

g1 “ id , g2 “ p12q, g3 “ p23q, g4 “ p123q, g5 “ p321q, g6 “ p13q.

Write down the matrix pg´1
i hjq

n
i ,j“1:

M :“

¨

˚

˚

˚

˚

˚

˚

˝

g1 g2 g3 g4 g5 g6

g2 g1 g4 g3 g6 g5

g3 g5 g1 g6 g2 g4

g5 g3 g6 g1 g4 g2

g4 g6 g2 g5 g1 g3

g6 g4 g5 g2 g3 g1

˛

‹

‹

‹

‹

‹

‹

‚



Dedekind’s observation was the following:

Take a finite group G “ tg1, g2, g3, . . . , gnu.

We will take G “ S3:

g1 “ id , g2 “ p12q, g3 “ p23q, g4 “ p123q, g5 “ p321q, g6 “ p13q.

Now treat the elements as (commuting) variables:

M :“

¨

˚

˚

˚

˚

˚

˚

˝

x1 x2 x3 x4 x5 x6

x2 x1 x4 x3 x6 x5

x3 x5 x1 x6 x2 x4

x5 x3 x6 x1 x4 x2

x4 x6 x2 x5 x1 x3

x6 x4 x5 x2 x3 x1

˛

‹

‹

‹

‹

‹

‹

‚



Remarkably, the determinant factors:

detM “ F1F2F
2
3

where:

F1 “ x1 ` x2 ` x3 ` x4 ` x5 ` x6

F2 “ x1 ´ x2 ´ x3 ` x4 ` x5 ´ x6

F3 “ x2
1 ´ x1x4 ´ x1x5 ´ x2

2 ` x2x3`

` x2x6 ´ x2
3 ` x3x6 ` x2

4 ´ x4x5 ` x2
5 ´ x2

6

Dedekind asked whether a similar factorization held for any finite
group.



Frobenius introduced characters, solved Dedekind’s problem in
general, and then realized the connection to linear representations

the following year!



Georg Frobenius (1849 - 1917),
Born in Charlottenburg,
Professor in Berlin 1891-1917.

Williams Burnside (1852 - 1927).

In the hands of Frobenius and Burnside many beautiful results
were discovered. The proofs were difficult to follow (despite

Burnside’s claims to the contrary).



Issai Schur, 1875 - 1941.
PhD in Berlin, 1901 under Frobenius,

Professor in Berlin 1909-1913, 1916-1934.

Emmy Noether, 1882 - 1935.



Weyl’s obituary to Noether:

“a new and epoch-making style of thinking in algebra.”

Weyl, Emmy Noether, Scripta Mathematica 3 (1935), 201-220.



First steps in modular representation theory: 1935 - 1960



We have so far discussed representations over C.

The story remains the same over fields of characteristic not
dividing |G |.

However over fields of small characteristic the situations becomes
much more complicated.



Let Sn ýkn by permutation of the variables. (For k a field.)

Consider:

∆ :“ tpλ, λ, . . . , λq P kn | λ P Zu “thin diagonal”

Σ :“ tpλ1, λ2, . . . , λnq P kn |
ÿ

λi “ 0u “sum zero”

Note
řn

i“1 λ “ nλ.

Hence ∆X Σ “ 0 if and only if n ‰ 0 in k .

If p - n, kn “ ∆‘ Σ. (“complete reducibility”)

If p|n, ∆ Ă Σ Ă kn.

In fact, in this case kn is indecomposable as a representation of Sn.
(“complete reducibility fails”)



In fact, any representation of G over a field of characteristic p is
completely reducible if and only if p does not divide |G |.



Why study modular representations?

1. Provides a way of recognising groups. (If I suspect that

G – SLnpFqq, I might like to proceed by constructing a

representation of G on Fn
q.)

2. Explains deep properties of the reduction modulo p of the
character table.

3. Many representations occurring in (mathematical) nature are
modular representations. (In number theory, algebraic
geometry, . . . )



Modular representation theory was developed almost single
handedly by Richard Brauer (1901 - 1977) from 1935 - 1960.

Brauer was born in Berlin-Charlottenburg and wrote his thesis in
Berlin under Issai Schur. He was forced to leave Germany in 1933
and wrote his first papers on modular representation theory in the

period 1935 - 1940 in Toronto. Like Frobenius, Schur and
Noether, number theory was an inspiration throughout his life.



Theorem (Brauer-Nesbitt)

Let k be an algebraically closed field of characteristic p. Then the
number of irreducible representations of kG is equal to the number
of p-regular conjugacy classes in G .

(A conjugacy class in G is p-regular if the order of any element is
not divisible by p.)



The classification of finite simple groups: 1832 - 1981?



Since the beginning of group theory the simple groups have played
an important role.

In 1832 Galois shows that PSL2pFqq is simple as long as q ‰ 2, 3.

In Burnside’s book in 1911 one sees a fascination in the possible
orders and structures of simple groups.

Brauer’s work on modular representation theory led to a good
understanding of “small” simple groups.

The real breakthrough came in 1963.



Burnside, Theory of finite
groups of finite order, Second
edition, 1911.



SOLVABILITY OF GROUPS OF ODD ORDER
WALTER FEIT AND JOHN G. THOMPSON

CHAPTER I

1. Introduction

The purpose of this paper is to prove the following result:

THEOREM. All finite groups of odd order are solvable.

Some consequences of this theorem and a discussion of the proof
may be found in [11].

The paper contains six chapters, the first three being of a general
nature. The first section in each of Chapters IV and V summarizes
the results proved in that chapter. These results provide the starting
point of the succeeding chapter. Other than this, there is no cross
reference between Chapters IV, V and VI. The methods used in Chapter
IV are purely group theoretical. The work in Chapter V relies heavily
on the theory of group characters. Chapter VI consists primarily of
a study of generators and relations of a special sort.

2. Notation and Definitions

Most of the following lengthy notation is familiar. Some comes
from a less familiar set of notes of P. Hall [20], while some has arisen
from the present paper. In general, groups and subsets of groups are
denoted by German capitals, while group elements are denoted by
ordinary capitals. Other sets of various kinds are denoted by English
script capitals. All groups considered in this paper are finite, except
when explicitly stated otherwise.

Ordinary lower case letters denote numbers or sometimes elements
of sets other than subsets of the group under consideration. Greek
letters usually denote complex valued functions on groups. However,

Received November 20, 1962. While working on this paper the first author was at
various times supported by the U. S. Army Research Office (Durham) contract number
DA-30-115-ORD-976 and National Science Foundation grant G-9504; the second author
by the Esso Education Foundation, the Sloan Foundation and the Institute for Defense
Analyses. Part of this work was done at the 1960 Summer Conference on Group Theory
in Pasadena. The authors wish to thank Professor A. A. Albert of the University of
Chicago for making it possible for them to spend the year 1960-61 there. The authors
are grateful to Professor E. C. Dade whose careful study of a portion of this paper
disclosed several blunders. Special thanks go to Professor L. J. Paige who has expedited
the publication of this paper.
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Feit, Thompson, Solvability of groups of odd order, Pacific J.
Math, vol. 13, no. 3 (1963).

255 pages, one of the longest mathematical proofs at the time.



The Feit-Thompson theorem was the first evidence that a
classification of simple groups might be possible. This is due to the

Brauer-Fowler theorem (1955): there are only a finite number of
simple groups with a give centralizer of an involution.

The rough idea is to study a potential simple group by studying
the centralizer

CG pσq “ tg P G | gσ “ σgu

of an involution σ P G (σ exists by Feit-Thompson).



[. . . a discussion of John G. Thompson’s work on the odd order theorem

and finite simple groups . . . ]

– Brauer, ICM address on the occasion of Thompson’s Fields
medal, 1970.



In 1983 the classification of finite simple groups was announced by
Gorenstein. Since 2004 the experts agree:

Theorem

If G is a finite simple group then G is isomorphic to one of the
following groups:

1. a cyclic group of prime order;

2. an alternating group An for n ě 5;

3. a finite group of Lie type (PSLnpFqq,PSP2npFqq, . . . ,E8pFqq)

4. one of the 26 sporadic simple groups.

Wikipedia: “The proof of the classification theorem consists of
tens of thousands of pages in several hundred journal articles.”



The largest sporadic simple group is the monster simple group M.
A group of order:

8080, 17424, 79451,28758, 86459, 90496, 17107, 57005, 75436, 80000, 00000 “

“ 246.320.59.76.112.133.17.19.23.29.31.41.47.59.71

Conjectured to exist in early 70’s by Fischer and Griess
independently.

Character table calculated by Fischer, Livingstone and Thorne in
1979 (assuming it exists, and has an irreducible complex

representation of dimension 196 883).

Proved to exist in 1982 by Griess.







Modular representation theory and derived categories: 1980 - ???



Finally, I will turn to the present and the future.

Towards the end of Brauer’s career, many researchers took up
modular representation theory. Today it is a thriving area of pure

mathematics.



There are two major (and related) new veins of investigation:

The study of derived categories in modular representation theory.
Here the notion of derived equivalence plays a key role. Amazingly,
derived categories often provide a means of explaining subtle and

unexpected properties of character tables.

The study of higher representation theory. Here one considers the
action of functors (like induction and restriction) on categories of
reprentations and asks: What relations do these functors satisfy?
What interesting structures can act on (higher) categories? This
theory promises to become as powerful as classical representation

theory.



Despite over a hundred years of effort we are still nowhere near
answering the following question:

Question: What are the dimensions of the irreducible
representations of the symmetric group Sn in characteristic p?

It seems to me that this question is similar to asking: what are the
homotopy groups of spheres? It is so complicated we will never

know the full story. But keeping it in mind and trying to solve it
leads to deeper understanding and beautiful mathematics.



Some dimensions of simple modules for p “ 2, 3, 5 for S12.

Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group. University Lecture Series, 1999.



In 1990, following enormous calculations,
Gordon James formulated a conjecture on
the dimensions of the simple representa-
tions of Sn if p ą

?
n (“p not too small”).

His conjecture if proven true, would rep-
resent major progress on the problem.

His conjecture is true for n “ 1, 2, . . . , 22.

James, The decomposition matrices of GLnpqq for n ď 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225–265.

DECOMPOSITION MATRICES 261

The matrices A10 for e = 3

n = 10, e - 3 , p > 3

(10) 1
(91) 1
(82) 1 1

(812) 1
(73) 1 1

(721) 1 1 1 1
(713) 1 1
(64) 1

(631) 1 1
(62 2 ) 1 1 1

(6212) 1 1 1 1 1
(61 4 ) 1 1

(5 2 ) 1 1
(541) 1 1
(532) 1 1 1 1

(5312) 1
(5221) 1 1 1 1 1 1
(521 3 ) 1 1 1 1

(51 5 ) 1 1
( 4 ^ ) 1 1 1

(4 2 1 2 ) 1 1 1 1
(43 2 ) 1 1 1 1

(4321) 1 1 1 1 1 1 1 1 1 1 1
(4313) 1 1 1 1 1 1 1 1 1

(42 3 ) 1 1 1 1 1
(42 2 1 2 ) 1

(4214) 1 1 1 1 1 1 1 1 1
(41 6 ) 1 1 1
(3 3 1) 1 1 1 1 1 1

(3¥) 1 1 1
Qhl2) 1 1 1 1 1
(321*) 1 1 1 1 1
(3231) 1 1 1

(32213) 1 1 1 1 1
(3215) 1 1 1 1 1 1 1 1 1 1 1
(317) 1 1 1
(2s) 1 1 1 1 1 1

(2412) 1 1 1
(23lS 1 1 1 1 1 1 1 1 1
(221*) 1 1 1 1 1 1 1
(218) 1 1 1
(I10) 1 1 1 1

Adjustment matrix

n = 10 (331) 1
e = 3 (2314) 1 1
/> = 3 (I10) 1 1



Theorem (W, 2013)

The James conjecture fails “generically”. In particular, it is not
true for Sn for all n ě 1 744 860.

The proof proceeds by constructing certain representations that are
(much) smaller than the James conjecture predicts. It builds on
earlier work of/with Soergel, Elias, Libedinsky and Xuhua He.

blah blah blah blah blah blah blah

We are trying to work out where, between n “ 22 and
n “ 1 744 860, the conjecture first goes wrong. But it is not easy!

There is still much to say about Sn, possibly the most fundamental
of all finite groups!



Theorem (W, 2013)

The James conjecture fails “generically”. In particular, it is not
true for Sn for all n ě 1 744 860.

A key tool are techniques going back to Schur’s PhD thesis in
1901 (one year after Frobenius first wrote down the character table

of the symmetric group)!
blah blah blah blah blah blah blah

We are trying to work out where, between n “ 22 and
n “ 1 744 860, the conjecture first goes wrong. But it is not easy!

There is still much to say about Sn, possibly the most fundamental
of all finite groups!



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for

sure whether order or chaos reigns. If any excitement can be
derived from what I have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but

which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the

idea: “Now let me think of something better myself.”

– Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.



Thanks!

.

Curtis, Pioneers of representation theory: Frobe-

nius, Burnside, Schur, and Brauer. History of

Mathematics, 15. AMS, 1999.
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