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Symmetry and the notion of a group: 1832 - 1920.



Symmetry is all around us.
We have been observing and studying symmetry for millennia.

The set of symmetries form a group.

We owe the term group(e) to Galois (1832).




Galois theory:
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Form K = Q(aq, ..., ap) Q(e?™/3).

Gal(K,Q) := Aut(Q(au, ..., am)) ("Galois group™)
Gal(K,Q) acts on {a1,...,am}.

Galois theory: This action tells us everything about f and its roots.



En d’autres termes, quand un groupe G en contient un autre H, le
groupe G peut se partager en groupes, que 'on obtient chacun en opérant
sur les permutations de H une méme substitution ; en sorte que

G=H+HS+HS +....

1. Terite la veille de la mort de l'auteur. (Insérée en 1832 dans la Revue ency-
clopédigue, numéro de septembre, page 568.) {J. LIOUVILLE.)

— 27 —

Et aussi il peut se diviser en groupes qui ont tous les mémes substitutions,
en sorte que

G=H+TH+TH+....

Ces deux genres de décompositions ne coincident pas ordinairement.
Quand ils coincident, la décomposition est dite propre.

11 est aisé de voir que, quand le groupe d'une équation n’est susceptible
d’aucune décomposition propre, on aura beau transformer cette équation,
les groupes des équations transformées auront toujours le méme nombre
de permutations.

Au contraire, quand le groupe d’'une équation est susceptible d'une dé-
composition propre, en sorte qu'il se partage en M groupes de N permuta-
tions, on pourra résoudre I’équation donnée au moyen de deux équations :
T'une aura un groupe de M permutations, 'autre un de N permutations.

Lors done qu'on aura épuisé sur le groupe d’une équation tout ce qu'il
y a de décompositions propres possibles sur ce groupe, on arrivera & des
groupes qu'on pourra transformer, mais dont les permutations seront tou-
jours en méme nombre.

Si ces groupes ont chacun un nombre premier de permutations, I'équa-
tion sera soluble par radicaux ; sinon, non.

H < G is a subgroup

Letter to Auguste Chevalier in 1832

written on the eve of Galois' death

notion of a normal subgroup

notion of a simple group

notion of a soluble group

main theorem of Galois theory
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be noticed also, that if 8=4¢, then, whatever the symbols a, 8
may be, af8=uac, and conversely.
A set of symbols,
1,4 B...

all of them different, and such that the product of any two of
them (no matter in what order), or the product of any one of
them into itself belongs to the set, is said to be a group*. It
follows that if the entire group is multiplied by any one of the
symbols, cither as further or nearer factor, the effect is simply
to reproduce the group; or what is the same thing, that if the
symbols of the group are multiplied together so as to form a

table, thus :—
Further factors.
1 « B
£1(1 |a |8 |-
E :
S al a | o | Ba
g
I
= -

that as well each line as each column of the square will contain
all the symbols 1, a, 8.. It also follows that the product of
any number of the symbols, with or without repetitions, and in
any order whatever, is a symbol of the aroun.  Suppose that the

Cayley, On the theory of groups, as depending on the symbolic equation ©" = 1,

Philosophical Magazine, 4th series, 7, 1854.

Cayley (1878): “A group is defined by the law of composition of its
members.”



1. Je zwei Elemente A und B bestimmen in der angegebenen Reihen-
folge eindeutig ein drittes, welches mit AB bezeichnet wird.

IL.  Aus jeder der beiden Gleichungen AC = BC oder CA = CB folgt
A=B

1II. Fiir die Operation, durch welche AB aus 4 und B entspringt,
gilt das associative Geesetz (AB)C = A(BC), aber nicht nothwendig das com-
mutative Gesetz AB = BA.

IV. Die Anzahl der Elemente ist endlich.

(&1, 82) — g182.

gh=gh' = h="H
hg =hg=h="H

g1(g283) = (g182)83,

G is finite.
=> existence of inverses

— Frobenius, Neuer Beweis des Sylowschen Satzes, Crelle, 1884.



CHAPTER II

THE DEFINITION OF A GROUP.

12. I~ the present chapter we shall enter on our main
subject and we shall begin with definitions, explanations and
examples of what is meant by a group.

Definition. Let
4,B,0,...
represent a set of operations, which can be performed on the

same object or set of objects. Suppose this set of operations
has the following characteristics.

(a) The operations of the set are all distinet, so that no
two of them produce the same change in every possible appli-
cation.

(8) The result of performing successively any number of
operations of the set, say 4, B,..., K, is another definite
operation of the set, which depends only on the component
operations and the sequence in which they are carried out, and
not on the way in which they may be regarded as associated.
Thus 4 followed by B and B followed by €' are operations of
the set, say D and E; and D followed by C'is the same opera-
tion as 4 followed by E.

(v) A being any operation of the set, there is always
another operation 4_, belonging to the set, such that 4
followed by A_, produces no change in any object. )

"J68T Yspdo d11uly jo sdnois jo Aiosy ‘spisuing



Surely the definition of group is one of the most intuitive and
useful in all of mathematics.

Why did it take us so long to realize the importance of this notion?



Speculation: In Galois theory we first see the importance of the
structure of the symmetry, or what we now call group theory.

That is, we move from the usefulness of one symmetry to the
study of the set of all symmetries.

It was Galois who first asked:

Is a finite group G simple?

A group G is simple if it has no non-trivial normal subgroups.

A subgroup H < G is normal if it is the kernel of some homomorphism G — G’.

Jordan-Hélder theorem: finite simple groups are the building blocks of all finite groups.



We also see this is Klein's Erlangen program (1872):

Geometry is its group of symmetries.

This idea also pervades 20" and 215 century theoretical physics.



Representation theory is the study of linear group actions:
A representation of a group G is a homomorphism
p:G— GL(V)
for some vector space V.
A representation is the same thing as a linear action of G on V.

A representation is irreducible if the only subspaces U < V which
are stable under the action of G are {0} — V and V itself.

There is a Jordan-Holder theorem: the irreducible representations
are the building blocks of all representations.



A representation theorist’s strategy:

problem involving a problem involving a
group action ANNANNNNNS  linear group action
ccX G C k[X

R

“decomposition” of
problem
GCoV;



Three examples of mathematics in light of representation theory



Example 1: Finite group actions on sets.

For a fixed finite group G these two problems are “the same”:
1) classify finite sets with G-action;
2) classify subgroups H — G up to conjugacy.

The equivalent problems turn out to be extremely complicated.
Because every finite group is a subgroup of a symmetric group, a
solution to (2) would be something like a classification of all finite

groups. There are more than 30 papers on the classification of

maximal subgroups of the monster simple group.

However the analogous linear problem “classify C-vector spaces
with linear G-action” is representation theory. Here we have a
satisfactory answer for many groups.



Example 2: The circle and the Fourier transform.
Let S' = {ze C||z| = 1}. Then S! is a (Lie) group.
For any m € Z we have a one-dimensional representation of S! via:

Slezw— zMe C* = GLy(C).

In fact, these are all irreducible representations of S!!



Now we consider: ST & St
We linearize this action and consider for example
st e 3(sh ).
Now our irreducible characters z™ belong to the right hand side.
Moreover, as Hilbert spaces:
13(s*,C) = PCz™

If we identify S! = R/Z then the functions z™ become the
fundamental frequencies A — 2™ of Fourier analysis.

Moral: The decomposition of L?(S!,C) into irreducible
representations is the theory of Fourier series.

Similarly, the Fourier transform can be explained in terms of
representations of (R, +), spherical harmonics in terms of
representations of SO(3) & S?, ...



Example 3: Rational points and Fermat's last theorem.
Suppose we want to find rational solutions to an equation X like:

y? = x3 — x? — 24649x + 1355209

Let us write X(C) for the solutions with x,y € C, X(Q) for
solutions x, y € Q etc.



It turns out that X(C) is a Riemann surface of genus one:

X(cC) =




The points in an algebraic closure X(Q) are also “easy” (think of
the stars in the night sky):




The tricky point is to find the rational points X(Q):

X(@) = "



Let Gal(Q) denote the absolute Galois group (automorphisms of
Q = Q). Group theory interpretation:

_ GaM(®)
= (&)

4 £.‘ xedh ‘Po{\A‘\(S\\

K@) =



Diophantine geometry can be encoded in questions like:

Understand the Gal(Q)-action on X(Q).

But we will probably never understand the Gal(Q) sets X(Q).



However representation theory suggests that we should cook up a

linear object out of the action of Gal(Q) out of X(Q).

It turns out that we can do this, and it is extremely profitable. The
short version: Gal(Q) acts in a very interesting way on
H1(X; Q¢) = Q2. (Can be thought of as something like a tangent
space.)




This is the structure behind the proof of Fermat's last theorem:

1. start with a solution x" + y" = z" with x,y,z€ Z, n > 2;

2. build from this solution a strange elliptic curve E (the “Frey
curve’);

3. observe that such a curve would give a very strange
G-representation Hi(E;Q3) (Frey, Serre, Ribet);

4. show that such a G-representation cannot exist (Wiles,
Taylor-Wiles).



Moreover the Langlands program gives us a vast array of theorems
and conjectures linking representations of Galois groups coming
from Diophantine problems (like the rational points question
above) to analysis and automorphic forms.

A beautiful introduction to these ideas:

R. P. Langlands, Representation theory: its rise and its role in
number theor_y. Proceedings of the Gibbs Symposium (New Haven, CT, 1989)



Representations of finite groups and the character table



Basic theorems in the representation theory of a finite group G:

1. any C-representation of G is isomorphic to a direct sum of
irreducible representations;

u irreducible _ conjugacy
C-representations of G J N classes in G |~
3. Any finite dimensional representation p: G — GL(V) is

determined (up to isomorphism) by its character:

Xp: G—>C:g—Trp(g).



Hence, we know (almost) everything about the C-representations
of a group once we know the characters of the irreducible
representations of our group G.

x(hgh™) = Tr(p(hgh™)) = Tr(p(h)p(g)p(h) ™) = Tr(p(g)) = x(g).
Hence x is a function on the conjugacy classes of G.

All of this information can be conveniently displayed in the
character table of G. The rows give the irreducible characters of G
and the columns are indexed by the conjugacy classes of G.

The character table of G is the C-linear shadow of G.



The first character table ever published. Here G is the alternating
group on 4 letters, or equivalently the symmetries of the
tetrahedron.

TAMALLAAUL WLL WA VAL UL & AAALAUAL WAL £ 1T MADUA VAL VLGOI | A fy s

FY ' I . . .
‘]llung 3 zwei inverse Classen (2) und (3) = (2). Sei p eine prim
Ree % e ;
Msche Wurzel der Einheit.

Tetraeder. - = 12.
X @ XNI fre

I

petl
Xo ik 3 1 1 1
Xi 1 —1 1 1 3
Xs | 1 0 p Pl ed
X | 1 0 Pt P 4

Die Werthe von v, sind zugleich die von f= e.
%o s

Frobenius, Uber Gruppencharaktere, S'ber. Akad. Wiss. Berlin, 1896.



Now G = S5, the symmetric group on 5 letters of order 120:




Conway, Curtis, Norton, Parker, Wilson, Atlas Of flnlte Zroups. Maximal subgroups and ordinary

characters for simple groups. With computational assistance from J. G. Thackray. Oxford University Press, 1985
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But if you're not yet convinced you are not alone!



Cayley’s dictum that “a group is defined by means of the
laws of combination of its symbols” would imply that, in dealing
purely with the theory of groups, no more concrete mode of
representation should be used than is absolutely necessary.
Tt may then be asked why, in a book which professes to leave
all applications on one side, a considerable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of groups
of linear transformations.

— Burnside, Theory of groups of finite order, 1897.
(One year after Frobenius' definition of the character.)



PREFACE TO THE SECOND EDITION

RY considerable advances in the theory of groups of

finite order bave been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is
accordingly in the present edition a large amount of new matter.

— Burnside, Theory of groups of finite order, Second edition, 1911.
(15 years after Frobenius' definition of the character table.)



What led Frobenius to his marvellous definition?

As well as an inherent fascination in finite groups, Frobenius was
influenced by questions from number theory.

From Dedekind’s account of Dirichlet's lectures Vorlesung tiber
Zahlentheorie (1863), Frobenius was also aware of the importance
of characters of abelian groups.

These occur in the Dirichlet L-function:

L(s,x) := Z L

x(n)n—*
Key to Dirchlet’s theorem on primes in arithmetic progressions.
Yy g

Characters are also throughout GauB' theory of quadratic
reciprocity, composition of forms, ...



“ dem Beweise des Satzes, dass jede lineare Function einer Varia-
2l unendlich viele Primzahlen darstellt, wenn ihre Coefficienten
Cilerfrom e ganze Zahlen sind, benutzte Dmicnier zum ersten Male
W'SSC Systeme von Einheitswurzeln, die auch in der nahe verwandten
8¢ nach der Anzahl der Idealclassen in einem Kreiskorper auftreten
fIgl, gie Bemerkung von Depexinp in Dmicnier’s Vorlesungen iber
ltlltheorw, 4. Aufl. S.625), sowie bei der Verallgemeinerung jenes
. “6S auf quadratische Formen und in den Untersuchungen iiber deren
Cilung in Geschlechter. Die charakteristische Eigenschaft dieser
p;(tlll;ﬂ\dm besteht nach Depexinp darin, dass sie von einer variabeln
"llhqm ganzen Zahl 7,& abhiingige Grossen v, (n) s.md, die nur eine
16 Anzahl von Werthen haben und der Bedingung

: 5 (m) () = x(mn)
(
knumn Wie er in rein abstracter Form ausfiihvt, lassen sich den
Imellten A, B, C, ... jeder endlichen Gruppe H vertauschbarer Kle-
Zuolte (Aner’schen Gr nppc) solche Einheitswurzeln y,(A), «(B), «(C), ---
rd“eﬂ, welche die Gleichungen
x(4)x(B) = x(4B)
1‘led’g(‘n, und die er nach dem Vorgange von Gauss die Charaktere
Muppe nannte.

First paragraph of Uber Gruppencharaktere.



Remarkably, when Frobenius begun his study of the character table
he didn’t yet know the connection to representation theory!

He was attempting to answer a question of Dedekind, which
Dedekind had stumbled upon in 1880 (!).

crennpeny 1§ 3, LV. g2 und 3, Acta Math. Bd. 8 und g). it
Im April dieses Jahres theilte mir Depexinp eine Aufgab® mll’
auf die er im Jahre 1880 gekommen war, und die, weil Sie 50“.01'1
der Gruppentheorie wie der Determinantentheorie :111:"0]101'&‘, miclt SL:"
ner Meinung nach wohl interessiren diirfte, \\'ﬁ.hl‘(.‘l?{l ihn selbst 3
niheres Eingehen darauf zu weit von seinen arithmetischen Unte
suchungen abziehen wiirde. Ihre Losung, die ich nichstens mitﬂleilen
zu konnen hoffe, brachte mich auf eine Verallgemeinerung 465
griffs der Charaktere auf beliebige endliche (-'1'u;])¢-11 I')J'l'-“:“” g
will ich hier entwickeln in der Meinung, dass durch .;'Pim‘ J‘:i“mhrﬂus
(!in Gruppentheorie eine wesentlicle Forderung und Bereicherd?2
f.:lhr(!n diirfte.  Ein besonderes Interesse gl‘:‘illllt die Theori® ]‘111‘
Charaktere noch durch ihre merkwiirdigen Beziehungen zu der Tk
der aus mehreren Haupteinheiten gebildeten complexen (jrosser

Last paragraph of introduction to Uber Gruppencharaktere.



Dedekind's observation was the following:

Take a finite group G = {g1,82,83,.-.,8n}-

We will take G = S3:

g1 =id, g = (12),g3 = (23), & = (123), g5 = (321), g6 = (13).

Write down the matrix (gflhj),’-’d-:l:

81 8 8 84 8 86
8 81 8 83 8 &85
M — 83 8 81 86 & 84
8 83 8 81 8 &2
84 8 82 8 81 83
86 84 85 82 8 81



Dedekind's observation was the following:

Take a finite group G = {g1,82,83,--.,8n}-

We will take G = S3:

g1 =id, g = (12),g3 = (23), & = (123), g5 = (321), g6 = (13).

Now treat the elements as (commuting) variables:

X1 X2 X3 X4 X5 Xp
Xo X1 X4 X3 X Xg
X3 X5 X1 Xe X2 Xa
X5 X3 X X1 X4 Xp
X4 X X2 X5 X1 X3
X6 Xa X5 Xo X3 X



Remarkably, the determinant factors:
det M = F1F,F2
where:

Fi=x1+x0+x3+xs+ x5 + Xg
Fo=x1—x0—x3+ x4+ x5 — Xg
F3 =X12 — X1X4 — X1X5 —X22+X2X3+

+ XoXg —x§ + X3Xp + X‘% — X4X5 +X52 fxg

Dedekind asked whether a similar factorization held for any finite
group.



Frobenius introduced characters, solved Dedekind’s problem in
general, and then realized the connection to linear representations
the following year!



—

Williams Burnside (1852 - 1927).

}: .v'g:r- Ll Trankian-

Georg Frobenius (1849 - 1917),
Born in Charlottenburg,
Professor in Berlin 1891-1917.

In the hands of Frobenius and Burnside many beautiful results
were discovered. The proofs were difficult to follow (despite
Burnside's claims to the contrary).



Issai Schur, 1875 - 1941.

PhD in Berlin, 1901 under Frobenius,

Professor in Berlin 1909-1913, 1916-1934.

Emmy Noether, 1882 - 1935.



Weyl's obituary to Noether:
“a new and epoch-making style of thinking in algebra.”

Weyl, Emmy Noether, Scripta Mathematica 3 (1935), 201-220.



First steps in modular representation theory: 1935 - 1960



We have so far discussed representations over C.

The story remains the same over fields of characteristic not
dividing |G|.

However over fields of small characteristic the situations becomes
much more complicated.



Let S, C k" by permutation of the variables. (For k a field.)
Consider:

A:={(\A...;,N)ek" | AeZ} “thin diagonal”
Y= {(A, A2, An) €K | Z/\,‘ =0} ‘“sum zero"

Note .7 A = n\.
Hence AnX =0ifand only if n# 0 in k.
If ptn k" =A@ (“complete reducibility”)
If pln, A < X ck".

In fact, in this case k” is indecomposable as a representation of S,,.
(“complete reducibility fails")



In fact, any representation of G over a field of characteristic p is
completely reducible if and only if p does not divide |G]|.



Why study modular representations?

1. Provides a way of recognising groups. (If | suspect that
G = SL,(Fg), | might like to proceed by constructing a
representation of G on [Fg.)

2. Explains deep properties of the reduction modulo p of the
character table.

3. Many representations occurring in (mathematical) nature are
modular representations. (In number theory, algebraic
geometry, ... )



Modular representation theory was developed almost single
handedly by Richard Brauer (1901 - 1977) from 1935 - 1960.

Brauer was born in Berlin-Charlottenburg and wrote his thesis in
Berlin under Issai Schur. He was forced to leave Germany in 1933
and wrote his first papers on modular representation theory in the
period 1935 - 1940 in Toronto. Like Frobenius, Schur and
Noether, number theory was an inspiration throughout his life.



Theorem (Brauer-Nesbitt)

Let k be an algebraically closed field of characteristic p. Then the
number of irreducible representations of kG is equal to the number
of p-regular conjugacy classes in G.

(A conjugacy class in G is p-regular if the order of any element is
not divisible by p.)



The classification of finite simple groups: 1832 - 19817



Since the beginning of group theory the simple groups have played
an important role.

In 1832 Galois shows that PSL,(FFy) is simple as long as g # 2, 3.

In Burnside's book in 1911 one sees a fascination in the possible
orders and structures of simple groups.

Brauer's work on modular representation theory led to a good
understanding of “small” simple groups.

The real breakthrough came in 1963.



NOTE M.

ON GROUPS OF ODD ORDER.

It has heen seen that there is in some respects a marked
difference between groups of even and those of odd order. The
most noticeable property of groups of odd orderis perhaps that they
admit no self-inverse irreducible representation, except the identical
one. From this property combined with that demoted by the
relation

I =Ty + el

of §253, it is not difficult to shew that all irreducible groups of odd
order in 3, b or 7 symbels are soluble.

Prof. G. A. Miller was the first to examine the possibility of a
simple group of odd order under given conditions. In a paper in
Vol. xxxur (1901) of the Proceedings of the London Mathematical
Society he proved that no group of odd order with a conjugate set
of operations containing fewer than 50 members could be simple.
In the same volume, working from a somewhat different point of
view, the author proved that all transitive groups of odd order
whose degree is less than 100 are soluble; and in his thesis
(Ba.lnmore, 1904) Mr H. L. Rietz extended this result to groups
whose degrees are less than 243. The author has also shewn (i.c.)
that the number of prime factors in the order of a simple group of
odd order cannot be less than 7 ; and thence, by an examination of
some particular cases, that 40,000 is a lower liwit for the order of a
group of odd degree, if simple. The contrast that these results
shew between groups of odd and of even order suggests inevitably
that simple groups of odd order do not exist. A discussion of the
possibility of their existence must in any case lead to lntemhng
results. Among other methods the problem might be
by a detailed examination of the properties of irreducible gmupn of
linear substitutions of odd order, or by regarding the group as a
group of isomorphisms of an Abelian group of type (1, 1, ..., 1)
whose order is a power of 2.

Burnside, Theory of finite
groups of finite order, Second
edition, 1911.

group of odd degree, if simple. The contrast that these results
shew between groups of odd and of even order suggests inevitably
that simple groups of odd order do not exist. A discussion of the



SOLVABILITY OF GROUPS OF ODD ORDER
WALTER FEIT AND JOHN G. THOMPSON
CHAPTER 1

1. Introduction

The purpose of this paper is to prove the following result:
THEOREM. All finite groups of odd order are solvable.

Some consequences of this theorem and a discussion of the proof
may be found in [11].

Feit, Thompson, Solvability of groups of odd order, Pacific J.
Math, vol. 13, no. 3 (1963).

255 pages, one of the longest mathematical proofs at the time.



The Feit-Thompson theorem was the first evidence that a
classification of simple groups might be possible. This is due to the
Brauer-Fowler theorem (1955): there are only a finite number of
simple groups with a give centralizer of an involution.

The rough idea is to study a potential simple group by studying
the centralizer

Co(o) ={ge G| go=o0g}

of an involution o € G (o exists by Feit-Thompson).



The central outstanding problem in the theory of finite groups today is that of
determining the simple finite groups. One may say that this problem goes back to
Galois. In any case, Camille Jordan must have been aware of it. Important classes

[...a discussion of John G. Thompson's work on the odd order theorem
and finite simple groups .. .]

Let me finish with a personal remark. One reaches a point in life where one wonders
what one still expects of life, what one would still like to see happen. This applies
to events in Mathematics too. I have passed the point I mentioned. I like to say
that I would like to see the solution of the problem of the finite simple groups and the
part I expect Thompson’s work to play in it. Quite generally, I would like to see
to what further heights Thompson’s future work will take him. 1 feel I should also
say the same about the three other Fields medallists.

— Brauer, ICM address on the occasion of Thompson's Fields
medal, 1970.



In 1983 the classification of finite simple groups was announced by
Gorenstein. Since 2004 the experts agree:

Theorem

If G is a finite simple group then G is isomorphic to one of the
following groups:

a cyclic group of prime order;
an alternating group A, for n = 5;
a finite group of Lie type (PSLy(Fq), PSP2n(Fy), ..., Es(Fq))

one of the 26 sporadic simple groups.

N

Wikipedia: “The proof of the classification theorem consists of
tens of thousands of pages in several hundred journal articles.”



The largest sporadic simple group is the monster simple group M.
A group of order:

8080, 17424, 7945128758, 86459, 90496, 17107, 57005, 75436, 80000, 00000 =

= 2%6.320 59 76 112.133.17.19.23.29.31.41.47.59.71

Conjectured to exist in early 70’s by Fischer and Griess
independently.

Character table calculated by Fischer, Livingstone and Thorne in
1979 (assuming it exists, and has an irreducible complex
representation of dimension 196 883).

Proved to exist in 1982 by Griess.
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Modular representation theory and derived categories: 1980 - 777



Finally, | will turn to the present and the future.

Towards the end of Brauer's career, many researchers took up
modular representation theory. Today it is a thriving area of pure
mathematics.



There are two major (and related) new veins of investigation:

The study of derived categories in modular representation theory.

Here the notion of derived equivalence plays a key role. Amazingly,

derived categories often provide a means of explaining subtle and
unexpected properties of character tables.

The study of higher representation theory. Here one considers the

action of functors (like induction and restriction) on categories of

reprentations and asks: What relations do these functors satisfy?

What interesting structures can act on (higher) categories? This

theory promises to become as powerful as classical representation
theory.



Despite over a hundred years of effort we are still nowhere near
answering the following question:

Question: What are the dimensions of the irreducible
representations of the symmetric group S, in characteristic p?

It seems to me that this question is similar to asking: what are the
homotopy groups of spheres? It is so complicated we will never
know the full story. But keeping it in mind and trying to solve it

leads to deeper understanding and beautiful mathematics.
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Some dimensions of simple modules for p = 2,3,5 for S15.

Mathas, Iwahori-Hecke algebras and Schur algebras of the symmetric group. University Lecture Series, 1999.
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In 1990, following enormous calculations,
Gordon James formulated a conjecture on
the dimensions of the simple representa-
tions of S, if p > y/n (“p not too small”).

His conjecture if proven true, would rep-
resent major progress on the problem.

His conjecture is true forn = 1,2,...,22.

James, The decomposition matrices of GL,(q) for n < 10, Proc.

London Math. Soc. (3) 60 (1990), no. 2, 225-265.
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Theorem (W, 2013)

The James conjecture fails “generically”. In particular, it is not
true for S, for all n > 1 744 860.

The proof proceeds by constructing certain representations that are
(much) smaller than the James conjecture predicts. It builds on
earlier work of /with Soergel, Elias, Libedinsky and Xuhua He.



Theorem (W, 2013)

The James conjecture fails “generically”. In particular, it is not
true for S, for all n > 1 744 860.

A key tool are techniques going back to Schur’s PhD thesis in
1901 (one year after Frobenius first wrote down the character table
of the symmetric group)!

We are trying to work out where, between n = 22 and
n = 1744 860, the conjecture first goes wrong. But it is not easy!

There is still much to say about S, possibly the most fundamental
of all finite groups!



However in spite of all our efforts, we know very little about finite
groups. The mystery has not been resolved, we cannot even say for
sure whether order or chaos reigns. If any excitement can be
derived from what | have to say, it should come from the feeling of
being at a frontier across which we can see many landmarks, but
which as a whole is unexplored, of planning ways to find out about
the unknown, even if the pieces we can put together are few and
far apart. My hope then is that some of you may go out with the
idea: “Now let me think of something better myself.”

— Richard Brauer, On finite groups and their characters,

Bull. Amer. Math. Soc. Volume 69, Number 2 (1963), 125-130.
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Thanks!
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