Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Revision Sheet 13

Hand in on Thursday, 31th January, prior to the lecture.

Exercise 1

Let V be a finite-dimensional vector space over a field k and g a Lie subalgebra of $\mathfrak{gl}(V)$.

- (a) Assuming that \mathfrak{g} consists of nilpotent endomorphisms, show that \mathfrak{g} is nilpotent (as a Lie algebra).
- (b) Prove or disprove the converse to (a).

Exercise 2

Let \mathfrak{g} be a finite-dimensional Lie algebra over some field. Show that $\dim(\mathfrak{g}/\mathfrak{z}(\mathfrak{g})) \neq 1$.

Exercise 3

Let \mathfrak{g} be a Lie algebra and V, W two \mathfrak{g} -modules over some base field k.

- (a) Show that $X.(v \otimes w) := X.v \otimes w + v \otimes X.w$ turns $V \otimes_k W$ into a g-module.
- (b) Show that $(X.\varphi)(v) := -\varphi(X.v)$ turns $V^* := \operatorname{Hom}_k(V,k)$ into a g-module.

Remember that, up to isomorphism, for any $n \in \mathbb{N}_0$ there is a unique n + 1-dimensional simple representation of $\mathfrak{sl}_2(\mathbb{C})$ and that these modules constitute all finite-dimensional simple representations of $\mathfrak{sl}_2(\mathbb{C})$. In this exercise, we denote this n + 1-dimensional simple module by L(n). By Weyl's theorem, any finite-dimensional $\mathfrak{sl}_2(\mathbb{C})$ -module isomorphic to a sum of these L(n).

- (a) Given $n, m \in \mathbb{N}_0$, provide a decomposition of the tensor product $L(n) \otimes_{\mathbb{C}} L(m)$ into a sum of irreducible $\mathfrak{sl}_2(\mathbb{C})$ -modules. (*Hint: Try to use only the knowledge of the weight spaces of* $L(n) \otimes_{\mathbb{C}} L(m)$! It might also by helpful to consider some examples first.)
- (b) Show that $L(n)^* \cong L(n)$ as $\mathfrak{sl}_2(\mathbb{C})$ -modules.

Exercise 4

Let \mathfrak{g} be a simple, finite-dimensional, complex Lie algebra and $\kappa : \mathfrak{g} \times \mathfrak{g} \to k$ be a bilinear form on \mathfrak{g} which is *invariant*, i.e. $\kappa([X,Y],Z) = \kappa(X,[Y,Z])$ for all $X, Y, Z \in \mathfrak{g}$.

- (a) Show that $\mathfrak{g} \to \mathfrak{g}^*$, $X \mapsto \kappa(X, -)$ is a homomorphism of \mathfrak{g} -modules.
- (b) Considering also $\mathfrak{g} \to \mathfrak{g}^*$, $X \mapsto \kappa_{\mathfrak{g}}(X, -)$, use Schur's lemma to show that κ is a scalar multiple of the Killing form $\kappa_{\mathfrak{g}}$.

Exercise 5

Recall that
$$\mathfrak{so}_{2n+1}(\mathbb{C}) = \{A \in \mathfrak{gl}_{2n+1}(\mathbb{C}) \mid A^t J + J A = 0\}$$
, where $J = \begin{pmatrix} 1 & 0 & 0 & 1_n \\ 0 & 0 & 1_n & 0 \end{pmatrix}$

- (a) Check that $\mathfrak{so}_{2n+1}(\mathbb{C}) = \left\{ \begin{pmatrix} 0 & a & b \\ -b^t & A & B \\ -a^t & C & -A^t \end{pmatrix} \right\}.$
- (b) Give an explicit description of the root space decomposition of $\mathfrak{so}_{2n+1}(\mathbb{C})$ with respect to the Cartan subalgebra of diagonal matrices.

Exercise 6

- (a) Let G ⊆ GL(V) and H ⊆ GL(W) be linear Lie groups with Lie algebras g and h, respectively, and let ρ : G → H be a homomorphism of Lie groups. Further, let H' ⊆ H be another linear Lie group in GL(W) with Lie algebra h' ⊆ h.
 Show that G' := ρ⁻¹(H') is linear Lie group in GL(V) with Lie(G') = Lie(ρ)⁻¹(h').
- (b) For a finite-dimensional real vector space V and $v \in V$, we put $\operatorname{Stab}(v) := \{\varphi \in \operatorname{GL}(V) \mid \varphi(v) = v\}$. Show that $\operatorname{Stab}(v)$ is a linear Lie group in $\operatorname{GL}(V)$, and that $\operatorname{Lie}(\operatorname{Stab}(v)) = \operatorname{stab}(v) := \{\psi \in \operatorname{End}(V) \mid \psi(v) = 0\}$.

Exercise 7

Let V be a finite-dimensional real vector space and $R \subset V$ be a reduced root system with Weyl group W := W(R). Further, let Δ be a basis of R. Suppose that $\alpha, \alpha_1, ..., \alpha_n \in \Delta$ and that $w = s_{\alpha_1}...s_{\alpha_n} \in W$ satisfies $w(\alpha) < 0$ (with respect to Δ).

- (a) Show that there exists some $1 \le i \le n$ such that $s_{\alpha_{i+1}}...s_{\alpha_n}(\alpha) = \alpha_i$.
- (b) For *i* as in (a), show that $ws_{\alpha} = s_{\alpha_1}...s_{\alpha_{i-1}}s_{\alpha_{i+1}}...s_{\alpha_n}$.

Exercise 8

Let V be a finite-dimensional complex vector space and ρ : $\mathrm{SU}(2;\mathbb{C}) \to \mathrm{GL}_{\mathbb{C}}(V)$ be a complex representation of $\mathrm{SU}(2;\mathbb{C})$. For $n \in \mathbb{Z}$, we put

$$V_n = \left\{ v \in V \ \left| \ \forall \lambda \in S^1 : \begin{pmatrix} \lambda & 0 \\ 0 & \overline{\lambda} \end{pmatrix} . v = \lambda^n v \right\} \right.$$

(a) Let $\operatorname{Lie}(\rho) : \mathfrak{su}_2(\mathbb{C}) \to \mathfrak{gl}_{\mathbb{C}}(V)$ be the induced representation of $\mathfrak{su}_2(\mathbb{C})$. Show that

$$V_n = \left\{ v \in V \ \left| \ \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} . v = inv \right\} \right.$$

(b) Use your knowledge of $\mathfrak{sl}_2(\mathbb{C})$ -modules to show that $V = \bigoplus_{n \in \mathbb{Z}} V_n$.