Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Sheet 11

Hand in on Thursday, 17th January, prior to the lecture.

Exercise 1

Let V be a finite-dimensional real vector space. Further, let $\{G_i\}_{i \in I}$ be an arbitrary family of linear Lie groups in GL(V).

(a) Show that $\bigcap_{i \in I} G_i$ is a linear Lie group in GL(V). (2 points)

(b) Show that
$$\operatorname{Lie}\left(\bigcap_{i\in I} G_i\right) = \bigcap_{i\in I} \operatorname{Lie}(G_i).$$
 (2 points)

Exercise 2

Let V be a finite-dimensional real vector space and let A be a real subalgebra of End(V), i.e. A is a real subvector space of End(V) with $\text{id}_V \in A$ such that for all $\psi, \phi \in A$ we have $\psi \phi \in A$, too.

Put $A^{\times} := \{ \psi \in A \mid \exists \phi \in A : \psi \phi = \mathrm{id}_V \}$, the units in A.

- (a) Show that $A^{\times} = A \cap GL(V)$. (*Hint: Cayley-Hamilton*) (2 points)
- (b) Show that A^{\times} is a linear Lie group in GL(V). (1 point)
- (c) Show that $\operatorname{Lie}(A^{\times}) = A$. (1 point)

As an application, consider a fixed $\phi \in \text{End}(V)$ and put $C_{\phi} := \{\varphi \in \text{GL}(V) \mid \varphi \phi = \phi \varphi\}$ as in the lecture.

(d) Conclude from (a)-(c) that $\operatorname{Lie}(C_{\phi}) = \{\psi \in \operatorname{End}(V) \mid \psi\phi = \phi\psi\}.$ (1 point)

Specializing further, suppose V carries the structure of a complex vector space.

(e) Deduce from (d) that $\operatorname{Lie}(\operatorname{GL}_{\mathbb{C}}(V)) = \operatorname{End}_{\mathbb{C}}(V)$. (1 point)

Exercise 3

Let V be a finite-dimensional complex vector space with Hermitean inner product $\langle -, - \rangle$. Recall from the lecture that

$$U(V, \langle -, -\rangle) := \{ \varphi \in \operatorname{GL}_{\mathbb{C}}(V) \mid \forall v, w \in V : \langle \varphi(v), \varphi(w) \rangle = \langle v, w \rangle \}$$

Determine $\text{Lie}(U(V, \langle -, -\rangle))$. (*Hint: Use Exercises 1 and 2!*) (4 points)

Exercise 4

Let V be a finite-dimensional real vector space and $\mu:V\times V\to V$ be a bilinear map. As in the lecture, we define

$$\begin{aligned} \operatorname{Aut}(V,\mu) &:= \{ \ \varphi \in \operatorname{GL}(V) \ | \ \forall x, y \in V : \ \mu(\varphi(x),\varphi(y)) = \varphi(\mu(x,y)) \} \\ \operatorname{Der}(V,\mu) &:= \{ \ D \in \operatorname{End}(V) \ | \ \forall x, y \in V : \ D(\mu(x,y)) = \mu(D(x),y) + \mu(x,D(y)) \} \end{aligned}$$

(a) Show that
$$\operatorname{Aut}(V, \mu)$$
 is a linear Lie group. (1 point)

(b) Show that
$$\operatorname{Lie}(\operatorname{Aut}(V,\mu)) = \operatorname{Der}(V,\mu).$$
 (3 points)

In particular, if $V = \mathfrak{g}$ is a real Lie algebra with bracket $\mu = [-, -] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, we get that $\operatorname{Aut}(\mathfrak{g})$ is a linear Lie group with $\operatorname{Lie}(\operatorname{Aut}(\mathfrak{g})) = \operatorname{Der}(\mathfrak{g})$.