Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Sheet 10

Hand in on Thursday, 10th January, prior to the lecture.

Exercise 1

Let G be a topological group and (V, ρ) be a continuous G-representation in a finitedimensional complex vector space V (equipped with its unique norm topology). Further, let $U \subseteq V$ be a subrepresentation of V. Show that there exists a unique $\overline{\rho} : G \times V/U \to V/U$ such that

- (a) $(V/U, \overline{\rho})$ is a G-representation, and
- (b) The canonical projection $\pi: V \to V/U$ is G-linear, i.e.

$$\begin{array}{ccc} G \times V & \stackrel{\rho}{\longrightarrow} V \\ \operatorname{id}_{G} \times \pi & & & & \\ G \times V/U & \stackrel{\rho}{\longrightarrow} V/U \end{array}$$

is commutative.

The representation $(V/U, \rho)$ is called the *quotient of* V by U. (4 points)

Exercise 2

Let G be a compact topological group.

- (a) Determine all compact subgroups of $(\mathbb{R}, +)$. (2 points)
- (b) Show that any continuous group homomorphism $G \to \mathbb{C}^{\times}$ has image in \mathbb{S}^1 .(2 points)

Exercise 3

Let G be an abelian topological group. Show that any simple, finite-dimensional and continuous representation of G is 1-dimensional, hence is given by some continuous group homomorphism $G \to \mathbb{C}^{\times}$ (or even $G \to \mathbb{S}^1$ if G is compact). (4 points)

Exercise 4

Let $G := (\mathbb{C}, +)$ and $\rho : G \to \operatorname{GL}_2(\mathbb{C})$ be given by $x \mapsto \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$. Show that ρ is not completely reducible. (4 points)

Frohe Weihnachten!