Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Sheet 9

Hand in on Thursday, 13th December, prior to the lecture.

Exercise 1

Let $\phi : \mathfrak{g} \to \mathfrak{g}$ be an automorphism of a complex semi-simple Lie algebra \mathfrak{g} . Further, let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} , and put $\mathfrak{h}' := \phi(\mathfrak{h})$.

- (a) Show that \mathfrak{h}' is also a Cartan subalgebra of \mathfrak{g} . (2 points)
- (b) Show that ϕ induces an isomorphism of root systems $R(\mathfrak{g}, \mathfrak{h}) \cong R(\mathfrak{g}, \mathfrak{h}')$. (2 points)

Exercise 2

Recall that for semi-simple \mathfrak{g} we denote $\operatorname{Inn}(\mathfrak{g})$ the subgroup of $\operatorname{Aut}(\mathfrak{g})$ generated by the automorphisms $\exp(\operatorname{ad}(x))$ for x an ad-nilpotent element of \mathfrak{g} . Here we study the \mathfrak{sl}_2 -case.

- (a) Describe $\operatorname{Inn}(\mathfrak{sl}_2(\mathbb{C}))$. (*Hint:* Recall that $\exp(\operatorname{ad}(x))(y) = e^x y e^{-x}$) (2 points)
- (b) Describe all Cartan subalgebras of $\mathfrak{sl}_2(\mathbb{C})$ and conclude that $\operatorname{Inn}(\mathfrak{g})$ acts transitively on the set of Cartan subalgebras of $\mathfrak{sl}_2(\mathbb{C})$. (2 points)
- (c) Show that the transpose automorphism $A \mapsto -A^t$ of $\mathfrak{sl}_2(\mathbb{C})$ does not belong to $\operatorname{Inn}(\mathfrak{sl}_2(\mathbb{C})).$ (2 points)

Exercise 3

Let \mathfrak{g} , \mathfrak{g}' be complex semi-simple Lie algebras with Cartan subalgebras \mathfrak{h} , \mathfrak{h}' and simple systems $\Delta \subset R(\mathfrak{g}, \mathfrak{h}), \Delta' \subset R(\mathfrak{g}', \mathfrak{h}')$, respectively. Further, let $\Gamma(\Delta), \Gamma'(\Delta')$ be the corresponding Dynkin diagrams.

(a) Use Serre's Theorem to construct for any embedding $\Gamma(\Delta) \hookrightarrow \Gamma'(\Delta')$ a canonical embedding $\mathfrak{g} \hookrightarrow \mathfrak{g}'$. (2 points)

In particular, any automorphism of $\Gamma(\Delta)$ induces a canonical automorphism of \mathfrak{g} .

- (b) Take \mathfrak{g} to be $\mathfrak{sl}_n(\mathbb{C})$ and \mathfrak{h} resp. Δ to be the standard Cartan resp. the standard simple system. Give an explicit description of the automorphism of $\mathfrak{sl}_n(\mathbb{C})$ corresponding to the nontrivial automorphism of A_n . (2 points)
- (c) In case n = 2, use Exercise 2 to check that the automorphism of part (b) differs from the transpose automorphism $A \mapsto -A^t$ of $\mathfrak{sl}_2(\mathbb{C})$ by an element of $\operatorname{Inn}(\mathfrak{sl}_2(\mathbb{C}))$, hence is not inner. (2 points)

Exercise 4

We finish the G_2 -exercise from Sheet 8. To begin, here's a summary of the previous results, so that you can attack this second part even if you didn't do the first: We considered the complex 8×8 -matrices

put $\mathfrak{h} := \mathbb{C}H_a + \mathbb{C}H_b$ and take as \mathfrak{n}_+ the subalgebra of $\mathfrak{gl}_8(\mathbb{C})$ generated by X_a and X_b . Here's what we already know:

- Defining $\alpha, \beta \in \mathfrak{h}^*$ by $\alpha(H_a) = 2, \alpha(H_b) = -1$ and $\beta(H_a) = -3, \beta(H_b) = 2, X_a$ and X_b are weight vectors for the adjoint action of \mathfrak{h} with weights α and β , respectively (i.e. $[H, X_a] = \alpha(H)X_a$ and $[H, X_b] = \beta(H)X_b$ for all $H \in \mathfrak{h}$).
- Together with X_a and X_b , the matrices $X_{a+b} := [X_a, X_b]$, $X_{2a+b} := \frac{1}{2}[X_a, X_{a+b}]$, $X_{3a+b} := \frac{1}{3}[X_a, X_{2a+b}]$ and $X_{3a+2b} := [X_b, X_{3a+b}]$ form a basis of \mathfrak{n}_+ , and the \mathfrak{h} -weight of X_{ia+jb} is $i\alpha + j\beta$. These matrices are explicitly given by

Now, to complete the construction, we take as \mathfrak{n}_- the subalgebra of $\mathfrak{gl}_8(\mathbb{C})$ generated by X_a^t and X_b^t (where $(-)^t$ denotes the transpose) and put $\mathfrak{g} := \mathfrak{n}_- + \mathfrak{h} + \mathfrak{n}_+$.

- (a) Show that \mathfrak{g} is a Lie subalgebra of $\mathfrak{gl}_8(\mathbb{C})$. (2 points)
- (b) Provide an explicit decomposition of \mathfrak{g} into \mathfrak{h} -eigenspaces. (1 point)
- (c) Show that \mathfrak{g} is simple and that \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . (2 points)
- (d) Conclude that \mathfrak{g} is a simple Lie algebra of type G_2 . (1 point)

Congratulations: you have constructed an exceptional simple Lie algebra!