Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Sheet 6

Hand in on Thursday, 22th November, prior to the lecture.

Exercise 1

Let $R \subseteq V$ be a root system. Show how to construct the Dynkin diagram of R from the Cartan matrix and vice versa. (4 points)

Exercise 2

Compute the order of the Weyl groups of the root systems of type A_n, B_n, C_n, D_n (see the last exercise on Sheet 5 for concrete realizations of these). (4 points)

Exercise 3

Let $R \subseteq V$ be a root system with some basis Δ . Show that $\Delta^{\vee} := \{\alpha^{\vee} \mid \alpha \in \Delta\}$ is a basis for the dual root system. (4 points)

Exercise 4

Let V be a finite dimensional real vector space. A *lattice* is a discrete subgroup $Q \subset V$ which spans V over \mathbb{R} . Equivalently (why?), a lattice is a subgroup $Q \subset V$ of the form

$$\left\{\sum \lambda_i \beta_i \ \Big| \ \lambda_i \in \mathbb{Z}\right\}$$

where $\{\beta_i\}_{i=1}^n$ is a basis of V.

Assume that V is equipped with a positive definite inner product (-, -). A lattice $Q \subset V$ is called *integral* if $(\alpha, \beta) \in \mathbb{Z}$ for all $\alpha, \beta \in Q$. A lattice $Q \subset V$ is called *even* if $(\alpha, \alpha) \in 2\mathbb{Z}$ for all $\alpha \in Q$.

- i) Prove that an even lattice is integral.
- ii) Let $Q \subset V$ be an even lattice. Assume that the set $R_Q = \{\alpha \in Q \mid (\alpha, \alpha) = 2\}$ spans V. Show that R_Q is a root system in V.
- iii) Let $V = \bigoplus_{i=1}^{r} \mathbb{R}e_i$ equipped with the standard inner product $(e_i, e_j) = \delta_{ij}$. Consider

$$\Gamma_r = \left\{ \sum a_i e_i \middle| \text{ either all } a_i \in \mathbb{Z} \\ \text{ or all } a_i \in \mathbb{Z} + \frac{1}{2} \text{ and } \sum a_i \in 2\mathbb{Z} \right\}.$$

Prove that Γ_r is an even lattice if and only if r is divisible by 8.

- iv) Consider $\Gamma = \Gamma_8 \subset V = \mathbb{R}^8$. Show that V is spanned by vectors $v \in \Gamma$ such that (v, v) = 2. Describe the roots in R_{Γ} .
- v) Find a basis for R_{Γ} and conclude that R_{Γ} is a root system of type E_8 . (*Hint:* Consider the functional $t \in V^*$ given by

$$t = \sum_{i=1}^{7} (i-1)e_i^* + 23e_8^*.$$

where e_i^* is the dual basis of $\{e_i\}_{i=1}^n$ (i.e. $\langle e_i^*, e_j \rangle = \delta_{ij}$ for all i, j), and look at the set of roots $\alpha \in R_{\Gamma}$ with $\langle t, \alpha \rangle = 1$.)

- v) Let H_7 be the hyperplane orthogonal to $e_7 + e_8$. Show that $R \cap H_7$ is a root system of type E_7 .
- vi) Let $H_6 \subset R$ be the subspace orthogonal to $e_6 + e_7 + 2e_8$ and $e_7 + e_8$. Show that $R \cap H_6$ is a root system of type E_6 .

We have now constructed all the irreducible root systems! (4 points)