Exercises for Algebra II Bonn, WS 2012/13 Dr. Geordie Williamson Hanno Becker

Sheet 2

Hand in on Monday, 22th October, prior to the lecture.

Exercise 1

Let k be a field and $\mathfrak{sl}_2(k) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{gl}_2(k) \ \middle| \ a+d=0 \right\}.$

(a) Find the structure constants of $\mathfrak{sl}_2(k)$ with respect to the basis

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

(1 point)

(3 points)

(b) Determine the ideals of $\mathfrak{sl}_2(k)$. Is $\mathfrak{sl}_2(k)$ simple?

Exercise 2

Let \mathfrak{g} be a Lie algebra. In the lectures it was explained how to pass between a \mathfrak{g} -module V and a representation $\rho : \mathfrak{g} \to \mathfrak{gl}(V)$. Prove that these two procedures are inverse to one another. (4 Points)

Exercise 3

Let k be a field.

- (a) Let \mathfrak{g} be a 3-dimensional Lie algebra over k with $\dim_k(\mathfrak{g}') = 1$ and $\mathfrak{g}' \subset \mathfrak{z}(\mathfrak{g})$. Determine the structure constants of \mathfrak{g} with respect to a suitable basis, and show that there is up to isomorphism a unique such algebra. (This Lie algebra is the famous *Heisenberg algebra*.) Find an isomorphism of \mathfrak{g} with a Lie subalgebra of $\mathfrak{gl}_3(k)$. (2 points)
- (b) Classify all 3-dimensional Lie-algebras \mathfrak{g} over k with $\mathfrak{z}(\mathfrak{g}) \neq 0$. (2 points)

Exercise 4

Prove that $\mathfrak{sl}_n(\mathbb{C})$ is simple.	(4 points)
---	-------------