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Chapter 1

What is a lagrangian field theory?

1.1 Fields

In classical physics, a field describes the state of a system by assigning to every
point of a geometric space or object the value of some physical quantity at that
point. An example for a field is the function that assigns to every point of a solid
the temperature at that point. Another example is the field that assigns the wind
velocity to every point on the surface of the earth. Such assignments are generally
assumed to be smooth maps. This is an idealization, of course, as the two examples
show, in which the physical systems consist of discrete atoms. But it has led to
very accurate descriptions of physical phenomena. In mathematics, the idealization
is promoted to a definition.

Definition 1.1.1. A field is a smooth section of a smooth fiber bundle F → M .
The set of all fields is denoted by F := Γ∞(M,F ).

Example 1.1.2. In the example of the temperature field the fiber bundle is F =
M × [0,∞) → M , where M is the manifold describing the solid. This shows that
F is generally not a vector bundle. In the example of the air velocity field the fiber
bundle is the tangent bundle F = TS2 → S2 of the sphere, which shows that F is
generally not a trivial bundle.

Terminology 1.1.3. In physics, the base manifold of the fiber bundle is called
the background geometry or the spacetime, the latter especially in fundamen-
tal theories such as gauge theory or general relativity. F is sometimes called the
configuration bundle, and the typical fiber of F the configuration space or the
field content. F is usually called the space of fields, although it often remains
unclear or implicit what “space” means mathematically.

Example 1.1.4. Let M = R and F := Q × R be a trivial bundle. Then F =
C∞(R, Q) is the space of smooth paths in Q. If we replace R with S1 then F is the
free loop space of Q.

1.2 The action principle in its “mythological” form

In a field theory, the fields are usually subject to a field equation f(φ) = 0, where
f : F → V is a map to a vector space V . The solutions of the field equation are
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those fields that are governed by the laws of physics or that possess some desired
mathematical properties. Typically, f is a differential operator.

Example 1.2.1. Let M ⊂ R3 be a 3-dimensional submanifold with boundary ∂M .
Let F := M × R → M , so that F = C∞(M). In electrostatics, φ ∈ C∞(M)
is viewed as the electric potential. The field equation is ∆φ = 0, where ∆ is the
Laplace operator. The solutions of the field equation are harmonic functions subject
to boundary conditions on ∂M .

Terminology 1.2.2. In physics, the fields that solve the field equations are often
called on-shell and those that do not off-shell. This terminology comes from the
so-called mass-shell (German: Massenschale), which is the positive energy sheet of
the hyperboloid of the 4-momentum (p0, p1, p2, p3) ∈ R4 of a relativistic particle of
rest mass m2 = (p0)

2− (p1)
2− (p2)

2− (p3)
2. In this sense “shell” is a mistranslation

of “Schale”. In early quantum field theory, where the momenta are represented
by partial derivatives on the wave functions, the mass-shell has come to denote the
space of solutions of the equation of motion □φ = m2 of the free relativistic particle.

The set of solutions of the field equation will be denoted by Fshell := f−1(0). In
general, Fshell ⊂ F is not a smooth variety, but has singularities. The field equations
are often quite complicated. The main tool to study them is the action principle.
In its ideal form it is stated as follows.

Action principle 1.2.3. There is a smooth function

S : F −→ R ,
called the action, such that φ ∈ F is a solution of the field equation if and only if
it is a critical point of S.

The value of this principle is that it is usually much easier to construct and
study a field theory via its action than via its field equations. For example, a
diffeomorphism Φ ∈ Diff(F) acts naturally on functions on F by pullback. So Φ is
a symmetry of the field theory given by an action S if Φ∗S = S. It follows that
Φ maps critical points of S to critical points, i.e. Φ(Fshell) = Fshell. Conversely, if
the symmetries are known, like the Lorentz transformations of special relativity, the
requirement for S to be invariant restricts the possible actions of the theory. For
such reasons, the action principle is one of the most important guiding principles in
both classical and quantum field theory.

Mathematically, however, the action principle 1.2.3 is often not rigorously true.
In his 2011 Felix Klein lectures Graeme Segal called it the “mythological picture”
of field theory. One of the main goal of these notes is to explain how the action
principle can be restated so that it is rigorously true, sufficiently general to cover
the most relevant field theories, such as general relativity, and compatible with the
current mathematical tools used in field theory.

1.3 Classical mechanics

1.3.1 The action principle in classical mechanics

What is the action? And how do we get from the action to the field equations?
The basic example is a classical mechanical system, where M = R is time and
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F = Q×R, so that a field is a smooth path q : R→ Q. Let us assume for simplicity
that Q = Rn. When the system is at rest, it will have to be at a critical point of
the potential energy V : Q→ R. When the system moves, the kinetic energy has to
be taken into account as well. The action turns out to be given by the difference of
kinetic and potential energy,

S(q) :=

∫
R

{
1
2
q̇i(t)q̇i(t)− V

(
q(t)

)}
dt ,

where qi(t) are the components of the path, where repeated indices are being summed
over, q̇i(t)q̇i(t) =

∑n
i=1 q̇

i(t)q̇i(t), and where we have chosen units in which the mass
is m = 1.

Problem 1.3.1. The integral over R that defines the action is generally divergent.

In a first attempt to avoid problem 1.3.1, we could consider only those q that
have a finite action, but the solutions of the field equation may not satisfy this
condition. For example, consider the case of a free particle where V (q) = 0. The
solutions of the equations of motion are paths of constant velocity. So only if the
velocity is zero the action is finite.

In a second attempt to solve problem 1.3.1, we as mathematicians could assume
M to be closed, that is, compact without boundary [Abb01]. In the case of classical
mechanics this would mean, however, that time is S1 so that we would only consider
periodic solutions. The assumption that M is closed will also exclude some of the
most interesting spacetimes, like Minkowski spacetime or many realistic physical
models for the curved spacetime of the universe we live in.

In a third attempt, we can restrict the domain of integration to a compact interval
[a, b] for the action to be finite. We will denote this action by S[a,b]. Following the
action principle 1.2.3, we now have to compute the critical points of S[a,b]. Let
q : [a, b] → Q be a smooth path. Since we have assumed for simplicity that Q is a
vector space, TqF ∼= F. Therefore, a tangent vector ξ ∈ TqF can be represented by
smooth family of paths R ∋ ε 7→ qε ∈ C∞(R, Q) given by qε = q+εξ. The derivative
of S[a,b] in the direction of ξ is obtained by inserting q+ εξ and expanding the result
to first order in ε.

S[a,b](q + εξ)− S[a,b](q)

= ε

∫ b

a

{
q̇i(t)ξ̇i(t)− ∂V

∂qi
(
q(t)

)
ξi(t)

}
dt+ O(ε2)

= ε

∫ b

a

{ d
dt

(
q̇i(t)ξi(t)

)
−q̈i(t)ξi(t)− ∂V

∂qi
(
q(t)

)
ξi(t)

}
dt+ O(ε2)

= − ε
∫ b

a

{
q̈i(t) +

∂V

∂qi
(
q(t)

)}
ξi(t) dt+ ε

∫ b

a

d

dt

(
q̇i(t)ξi(t)

)
dt+ O(ε2) .

Let us first consider variations ξi that have compact support in [a, b], so that the
second integral vanishes. The first integral vanishes for all ξi if and only if qi satisfies
the field equation

q̈i = −∂V
∂qi

,
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which is the equation of motion of a point particle in a potential V . The second
integral is given by∫ b

a

d

dt

(
q̇i(t)ξi(t)

)
dt = q̇i(b) ξi(b)− q̇i(a) ξi(a) .

Now we consider variations ξi that have their support concentrated in small neigh-
borhoods around the boundary points a and b. By keeping ξi(a) and ξi(b) constant
while shrinking the support, we can make the first integral arbitrarily small. The
conclusion is that the second integral has to vanish for all ξi independently of the
first, which is the case if and only if

q̇i(a) = 0 and q̇i(b) = 0 .

This is certainly not a condition we want to impose on q.
We can modify the action principle by requiring ξi(a) = 0 = ξi(b). But then

the solutions of the field equation are not the critical points of S but rather points
where the derivative of S vanishes on a subset of vectors in TqF. Moreover, we
have to require the conditions for all compact intervals [a, b]. In terms of differential
topology, we are pairing the de Rham 1-cocycle represented by the integrand with
the 1-cycle represented by the interval. In light of the Poincaré duality between
cohomology and homology on a manifold, this suggest that the derivation of the
field equation might be formulated in the framework of cohomology. We will return
to this point of view in Chapter 5 and Chapter 6.

1.3.2 Lagrangians

In the example of classical mechanics we have seen that the action is obtained by
integrating for every field q a volume form over the spacetime manifold R.

Definition 1.3.2. A smooth function L : F → Ωn(M), where n = dimM , is called
a lagrangian.

Remark 1.3.3. For simplicity, we shall assume that M is oriented. If M is non-
orientable, we have to tensor before integration with the determinant bundle of M
as it is done in [DF99].

Given a lagrangian L, we tentatively define the action by

S(φ) :=

∫
M

L(φ) .

But, as we have seen, even for classical mechanics the action is generally not finite,
so it is certainly not a smooth map to R. The issues come from the integration over
the non-closed manifold R.

When we review the derivation of the equation of motion carefully, we see that
we did not need to compute any integrals. All we did is to discard exact terms under
the integral. This means that we can just as well study the cohomology class of the
integrand without ever pairing it with the fundamental class [M ]. We will return to
this idea in Chapter 6.



10 1. What is a lagrangian field theory?

Definition 1.3.4. A lagrangian field theory (LFT) consists of a smooth fiber
bundle F →M and a lagrangian L : F → Ωn(M).

For a general action F → R there is no mathematical reason why the critical
points should be the solution of a PDE, as is the case for most LFTs that come
to mind. The following condition guarantees that the Euler-Lagrange equation is a
PDE.

Definition 1.3.5. A lagrangian L : F → Ωn(M) is called local if there is a natural
number k ≥ 0, such that the value of L(φ) at m depends smoothly on m and the
partial derivatives of φ at m up to order k.

1.3.3 Presymplectic structure

The vertical tangent bundle of πQ : TQ→ Q is given by

V TQ = ker(TπQ : TTQ→ TQ) ∼= TQ×Q TQ .

Let f : TQ → R be a smooth function. Restricting the differential df : TTQ → R
to the vertical tangent bundle yields a map

df
∣∣
V TQ

: TQ×Q TQ −→ R .

Since this map is linear in the second factor (the one that can be identified with the
vertical tangent vectors), we can identify it with a smooth map

Legf : TQ −→ T ∗Q ,

which is the Legendre transform generated by f .
Let ωT ∗Q denote the canonical symplectic form on T ∗Q. Its pullback by the

Legendre transform,
ω = Leg∗fωT ∗Q ,

is a presymplectic form on TQ, which is symplectic if and only if Legf is a local
diffeomorphism.

Definition 1.3.6. The function f : TQ → R is said to satisfy the Legendre
condition if Legf is a local diffeomorphism.

The lagrangian function for a particle in a time-dependent potential,

L =
1

2
q̇iq̇i − V (q, t) , (1.1)

is a function on R× TQ. (In Example 3.1.7 we will see that R× TQ is the first jet
manifold of the configuration bundle R×Q → R.) If we choose a time t0 ∈ R and
restrict L to {t0} × TQ ∼= TQ, we obtain a function

Lt0 : TQ −→ R ,

that generates a Legendre transformation LegLt0
: TQ→ T ∗Q.
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Let qi be local coordinates of Q and (qi, q̇i) the induced coordinates on TQ,
which are given by

qi
(
x, vj

∂

∂qj

)
= qi(x) , q̇i

(
x, vj

∂

∂qj

)
= vi

for all (x, v) ∈ TQ. Let (qi, pi) be the induced coordinates on T ∗Q, which are given
by

qi(x, αjdq
j) = qi(x) , pi(x, αjdq

j) = αi

for all (x, α) ∈ T ∗Q. The Legendre transform generated by Lt0 maps a vector
(x, v) ∈ TQ to

LegLt0
(x, v) =

(
x,
∂Lt0

∂q̇i
(x, v) dqi

)
.

The pullback of the canonical 1-form pidq
i on T ∗Q by the Legendre transform is

Leg∗Lt0
(pidq

i) =
∂Lt0

∂q̇i
dqi .

The pullback of the canonical symplectic form ωT ∗Q = dqi ∧ dpi on T ∗Q is

ω = dqi ∧ d
(∂Lt0

∂q̇i

)
=

∂2Lt0

∂q̇i∂qj
dqi ∧ dqj + ∂2Lt0

∂q̇i∂q̇j
dqi ∧ dq̇j .

In local coordinates, the Legendre transform is given by the coordinate transforma-
tion

(qi, q̇i) 7−→
(
qi,

∂Lt0

∂q̇i

)
.

The Jacobi matrix of this map is of the form

J(LegLt0
) =

(
δij 0

∗ ∂2Lt0

∂q̇i∂q̇j

)
.

By the inverse function theorem we conclude that Lt0 satisfies the Legendre condition

if and only if
∂2Lt0

∂q̇i∂q̇j
is an invertible matrix at all points of TQ. For more on the

Legendre condition in symplectic geometry see e.g. Chapter 20 of [CdS01].

For a lagrangian function of the form (1.1) the Jacobi matrix is given by
∂2Lt0

∂q̇i∂q̇j
=

δij, which satisfies the Legendre condition. This, however, is not always the case.

Example 1.3.7. Let Q be a manifold with a riemannian metric g. The length of a
path q : [0, 1]→ Q is given by the integral

S(q) =

∫ 1

t=0

√
gij
(
q(t)

)
q̇i(t)q̇j(t) dt

The lagrangian
L =

√
gij q̇iq̇j dt

of this action does not satisfy the Legendre condition.
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The symplectic structure ω is an important ingredient of classical mechanics. It
is used to study symmetries, describe the dynamics as hamiltonian flows, and the
Poisson bracket defined by ω is the most important algebraic structure for quanti-
zation. However, as we have seen, we have to contend with the following issues:

1. The Legendre transform is defined for lagrangians that depend only on t, q, q̇,
but not on higher derivatives.

2. The Legendre transformation generally depends on the choice of a time t0.

3. The presymplectic form is symplectic only if the Legendre condition is satisfied.

In classical mechanics, the assumptions we must make to avoid these issues are
mild and usually satisfied. Most lagrangians depend only on the first derivatives
of q and if not, we can convert the lagrangian into a first order lagrangian on a
larger configuration bundle. Most lagrangians do not depend explicitly on time, so
the Legendre transformation is the same for all choices of t0. And for lagrangians
with the usual kinetic energy term 1

2
q̇iq̇i the Legendre condition is satisfied. For

field theories with spacetime dimension larger than 1, however, the three issues pose
major technical and conceptual problems.

1.4 Maxwell theory

1.4.1 Minkowski space

Maxwell theory is the classical theory of electromagnetic fields. Its background
geometry is physical spacetime given by a lorentzian 4-manifold M . The most basic
choice for M is Minkowski space, that is, M = R4 equipped with the metric

η = 1
2
ηijdx

idxj

= 1
2

(
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

)
,

where x0 is the time-coordinate, and x1, x2, x3 are the space-coordinates.

Remark 1.4.1. We define lorentzian metrics to have the signature (−1, 1, 1, 1),
which is sometimes called the “east coast” convention, the signature (1,−1,−1,−1)
being called the “west coast” convention. The advantage of the east coast con-
vention is that the metric induces the usual euclidean scalar product on 3-space
Span{x1, x2, x3}.

Terminology 1.4.2. A tangent vector v ∈ TM on a lorentzian manifold is called
space-like if η(v, v) > 0, light-like if η(v, v) = 0, and time-like if η(v, v) < 0. A
submanifold S ⊂M is called space-like, light-like, or time-like, if all tangent vectors
in TS are.

Recall that every bilinear form ⟨ , ⟩ on a vector space V can be extended to a
bilinear form ⟨ , ⟩ : ∧kV × ∧kV → R on the k-th exterior power by

⟨v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk⟩ := det
(
⟨vi, wj⟩1≤i,j≤k

)
. (1.2)
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We consider the fiber-wise scalar product given by the inverse of η,

⟨ , ⟩ : T ∗M ×M T ∗M −→ R
⟨αidxi, βjdxj⟩ := ηijαiβj ,

where ηij denotes the inverse matrix of ηij, i.e. η
ijηjk = δik. By (1.2) this induces a

bilinear form on differential k-forms,

⟨ , ⟩ : Ωk(M)× Ωk(M) −→ C∞(M) .

Let us equip M with the standard orientation for which (x0, x1, x2, x3) is an
oriented chart. Then there is a unique oriented volume form vol ∈ Ω4(M) that is
normalized, ⟨vol, vol⟩ = 1. In terms of coordinate 1-forms, it is given by

vol = dx0 ∧ . . . ∧ dx3 .

The volume form is used to define a Hodge structure (see e.g. Sec. 3.3 of
[Jos17]), that is, a C∞(M)-linear map

⋆ : Ωk(M) −→ ΩdimM−k(M)

uniquely determined by the defining equation

α ∧ ⋆β = ⟨α, β⟩ vol ,

for all α, β ∈ Ωk(M) and all k. Note that vol = ⋆1. The Hodge-⋆ satisfies

⋆(⋆α) = (det η)(−1)(dimM−|α|)|α|α , (1.3)

where det η is the determinant of the metric in any orthonormal basis and |α| the
degree of the form α. For a metric of signature (−1, 1, 1, 1) we have det η = −1.

1.4.2 Charges and currents

Electric charges and currents generate the electromagnetic field. In physics, a time-
dependent charge density is a smooth function ρ on Minkowski space and a current
density a vector field v = v1 ∂

∂x1
+ v2 ∂

∂x2
+ v3 ∂

∂x3
on M with components only in the

space directions.
The total charge qS,t contained in a submanifold S ⊂ R3 of space at time t is

given by the integral

qS,t =

∫
{t}×S

ρ dx1 ∧ dx2 ∧ dx3 .

The flux of the current through the surface ∂S at time t is given by

ΦS,t :=

∫
{t}×∂S

ιv(dx
1 ∧ dx2 ∧ dx3)

=

∫
{t}×S

dιv(dx
1 ∧ dx2 ∧ dx3)

=

∫
{t}×S

(div v) dx1 ∧ dx2 ∧ dx3 ,
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where we have used Stokes’ theorem and div v = ∂vi

∂xi
.

The current density describes the flow of charge through space, so if the charge
is conserved, then the rate of change of the charge in every space-region S must be
equal to the negative flux through the surface of S, d

dt
qS,t = −ΦS,t. This is the case

if and only if
∂ρ

∂t
= − div v . (1.4)

We obtain a form of condition (1.4) that does not rely on the splitting of the manifold
M into time and space directions by combining the charge density and the current
density into the 4-vector field

J := ρ
∂

∂x0
+ v1

∂

∂x1
+ v2

∂

∂x2
+ v3

∂

∂x3
.

The de Rham differential of ιJvol is

d ιJvol =
( ∂ρ
∂x0

+ div v
)
vol .

The conclusion is that Eq. (1.4) holds if and only if j := ιJvol is closed. This
suggests the following definition:

Definition 1.4.3. Let M be an n-dimensional manifold. A form j ∈ Ωn−1(M) is
called a current. A current is conserved if it is closed, dj = 0.

Terminology 1.4.4. In physics, it is usually the vector field J that is called the 4-
current. For our purposes, Def. 1.4.3 is more convenient. Unlike for J , the condition
in Def. 1.4.3 for a current to be conserved does not involve the volume form.

1.4.3 Gauge symmetry

The fields for Maxwell theory on Minkowski space are 1-forms. That is, the config-
uration bundle is T ∗M →M and the space of fields

F = Ω1(M) .

In Maxwell theory it is customary to denote the fields by the letter A. The lagrangian
for the electromagnetic field generated by a current j = ιJvol is

L(A) =
(
1
2
⟨dA, dA⟩+ ιJA

)
vol

= 1
2
dA ∧ ⋆dA+ j ∧ A .

(1.5)

The Euler-Lagrange equation is

d ⋆ dA = j . (1.6)

The equation d(dA) = 0, which is satisfied for any field A, is also part of the Maxwell
equations. Note that Eq. (1.6) implies that dj = 0, that is, j is conserved.

Terminology 1.4.5. In physics, A is usually called the gauge field, in order to
distinguish it from the electromagnetic field F := dA. (Denoting the electromag-
netic field with F is so standard in physics, that I could not resolve to use a different
letter in order to distinguish it from our notation for the configuration bundle.)
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If we view Eq. (1.6) as equation d ⋆ F = j for the electromagnetic field F , not
assuming that the field is the differential of a 1-form A, we have to add the equation

dF = 0 (1.7)

to the field equations. Equation (1.6) and Equation (1.7) together are the Maxwell
equations.

The Maxwell equations are invariant under the Lorentz group, the group of linear
transformations of R4 that leave the bilinear form η invariant. A careful study of
these symmetries led Einstein in 1905 to the development of special relativity [Ein05].
In addition to this external symmetry group that acts on the spacetime manifold,
there is the internal symmetry group

(
C∞(M),+, 0

)
that acts on the fields by

C∞(M)× Ω1(M) −→ Ω1(M)

(f, A) 7−→ A+ df .

A careful study of this symmetry, called local gauge symmetry, led to the devel-
opment of more general gauge theories.

1.5 General relativity

1.5.1 Hilbert-Einstein lagrangian and field equations

In general relativity a field is a lorentzian metric on a smooth oriented manifold of
dimension n. The vacuum Hilbert-Einstein lagrangian is

L(g) := R(g) volg ,

where R(g) is the scalar curvature and volg = ⋆1 the canonical volume form of g.
The Euler-Lagrange equation is the vacuum Einstein equation

G := Ric(g)− 1

2
R(g) g = 0 ,

where Ric(g) is the Ricci curvature and where the symmetric 2-form G is called the
Einstein tensor. Pairing the Einstein tensor with the inverse metric, we obtain

gijGij = R(g)− n

2
R(g) = −n− 2

2
R(g) .

If n > 2 it follows, that every metric that satisfies the Einstein equations has van-
ishing scalar curvature. This in turn implies that the vacuum Einstein equations
are equivalent to

Ric(g) = 0 .

In other words, a metric satisfies the Euler-Lagrange equations of general relativity
if it is Ricci flat.
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1.5.2 Mathematical features of general relativity

Here are some of the mathematical features of general relativity that make the theory
difficult, but interesting to study:

1. The configuration bundle is not a vector bundle. It is a subbundle of the vector
bundle of symmetric 2-forms, but due to the Lorentz signature of the metric,
the fibers are not convex. As a consequence, local fields cannot be added by a
partition of unity argument.

2. The fibers of the configuration bundle are not connected.

3. Local sections of the fiber bundle can generally not be expanded to global
sections. If the spacetime manifold M is closed (compact without boundary)
with non-vanishing Euler characteristic, then there are no global sections.

4. The lagrangian depends on the 2nd derivatives of the fields.

5. The field equation is a 2nd order PDE, that is, of the same order as the
lagrangian.

6. The lagrangian and the field equation are not polynomial in the fields and
its derivatives, since the Ricci and scalar curvature involve the inverse of the
metric field g and the volume form the inverse of the square root

√
| det g| of

its determinant.

7. The lagrangian L : F → Ωn(M) is Diff(M)-equivariant with respect to the
action on metrics and forms by pullback. (If we view L as (0, n)-form on
F ×M , the form is invariant.) The diffeomorphism symmetry is an external
symmetry, which means that it acts not only on the fibers of the configuration
bundle but also on the base manifold M .

These properties should serve as preventive medicine against oversimplifying as-
sumptions that exclude general relativity. They also show how the properties of
field theories can differ from gauge theories such as Maxwell-Theory, which often
inform the development of mathematical theories, generalizations, and approaches
to quantization.

Exercises

Exercise 1.1 (Symplectic structure on the cotangent bundle). Let Y be a smooth
manifold and πY : T ∗Y → Y its cotangent bundle. Let πT ∗Y : T (T ∗Y ) → T ∗Y
denote the projection of the tangent bundle of T ∗Y . The canonical 1-form λ on
T ∗Y is defined by

λ(v) =
〈
πT ∗Y (v), TπY (v)

〉
for all v ∈ T (T ∗Y ), where the pairing denotes the pairing of the tangent space and
its dual. Let

ω = −dλ .
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Show that ω is a symplectic form, which means that ω is closed and non-degenerate.
(A 2-form ω is non-degenerate, if the associated map of vector bundles TX → T ∗X,
v 7→ ιvω, is an isomorphism.) This ω is called the canonical symplectic form on
the cotangent bundle.

Exercise 1.2 (Poisson brackets on presymplectic manifolds). Let ω be a closed 2-
form on the manifold X (also called a presymplectic form). A pair (f, v) of a
function f ∈ C∞(X) and a vector field v ∈ X(X) is called hamiltonian if

ιvω = −df .

A function or a vector field is called hamiltonian if it belongs to a hamiltonian pair.
The subspace of hamiltonian functions will be denoted by C∞ham(X). The Poisson
bracket of two hamiltonian functions f, g ∈ C∞ham(X) with hamiltonian vector fields
v and w, respectively, is defined by

{f, g} = ιwιvω ,

which is a smooth function on X.

(i) Show that the Poisson bracket is well-defined on hamiltonian functions, that
is, {f, g} does not depend on the choice of hamiltonian vector fields v and w.

(ii) Show that {f, g} is hamiltonian. Is the product fg of two hamiltonian func-
tions hamiltonian?

(iii) Show that the Poisson bracket satisfies the Jacobi identity,

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

for all f, g, h ∈ C∞ham(X).

(iv) Show that the Poisson bracket is a derivation in each argument, that is

{f, gh} = {f, g}h+ g{f, h}

for all f, g, h ∈ C∞ham(X).

Exercise 1.3 (Hamiltonian group action). Consider the symplectic structure on the
cotangent bundle of R3 as defined in Exercise 1, that is, the symplectic manifold
(T ∗R3, ω) with coordinates (q1, q2, q3, p1, p2, p3) on T

∗R3 ∼= R3 × R3 ∼= R6. Let

SO(3) = {A ∈ GL(3;R) |AtA = id and det(A) = 1}

be the special orthogonal group of rotations of R3. Its Lie algebra

so(3) = {A ∈ gl(3;R) |At = −A}

is the space of 3 × 3 skew-symmetric matrices. It can be identified with R3 while
the Lie bracket on so(3) can be identified with the exterior product on R3:

so(3) = {A ∈ gl(3;R) |A+ At = 0} −→ R3

A =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 7−→ (a1, a2, a3) = a⃗

[A,B] = AB −BA 7−→ a⃗× b⃗ .
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(i) Show that the SO(3)-action on R3 lifts to an action on the cotangent bundle

Ψ : SO(3)× T ∗R3 −→ T ∗R3

that preserves the symplectic form, that is, the structure diffeomorphisms
ΨA ∈ Diff(T ∗R3) satisfy Ψ∗Aω = ω for all A ∈ SO(3).

The infinitesimal Lie algebra action is

ρ : so(3) −→ X(R6)

ρ(⃗a)(q⃗, p⃗) := (⃗a× q⃗, a⃗× p⃗) .

(ii) Show that ρ is a morphism of Lie algebras.

(iii) Show that there is a linear map

µ : so(3) −→ C∞(T ∗R3)

such that
(
µ(⃗a), ρ(⃗a)

)
is a hamiltonian pair and µ a morphism of Lie algebras.

(The map µ is called the momentum map of the action.)

Exercise 1.4 (Chern-Simons 5-form). Let P →M be a principal bundle. Let F (A)
denote the curvature 2-form of a gauge field A. Compute the Chern-Simons 5-form,
which is the 5-form ω(A) on M that satisfies

d
(
ω(A)

)
= Trad{F (A) ∧ F (A) ∧ F (A)}

and depends polynomially on A and dA.



Chapter 2

Diffeological spaces of fields

So far our “space” of fields F = Γ(M,F ) is just a set. What is the geometric
structure on F that we need in classical field theory? In order to formulate the
action principle we need the notion of “variations” in F, which are families

p : U −→ F

parametrized by open subsets p : U ⊂ Rn, n ≥ 0. In order to define the geometric
structure of variations we have to decide which families we consider to be smooth.
For the set of sections of a smooth fiber bundle, the natural choice is the smooth
homotopies of sections. That is, p is called smooth if the map

U ×M −→ F

(u,m) 7−→
(
p(u)

)
(m)

is a smooth map of manifolds.

2.1 Diffeology

2.1.1 From plots to concrete sheaves

Definition 2.1.1 (e.g. Def. 1.5 in [IZ13]). A diffeological space is a setX together
with a collection of maps p : U → X, called plots, for all open subsets U ⊂ Rn,
n ≥ 0 that satisfy the following conditions:

(i) Every constant map p : U → X is a plot.

(ii) Let U ⊂ Rn be an open subset and {Ui}i∈I an open cover. If p|Ui
: Ui → X is

a plot for every i ∈ I, then p is a plot.

(iii) If p : U → X is a plot and f : V → U a smooth map from an open subset
V ⊂ Rm, then p ◦ f is a plot.

A morphism of diffeological spaces f : X → Y is a map of sets such that for
every plot p : U → X the map f ◦ p : U → Y is a plot. The category of diffeological
spaces will be denoted by Dflg.
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Terminology 2.1.2. The collection of plots is called a diffeology on X. The open
subsets of Rn for all n ≥ 0 are sometimes called parameter spaces. Plots are also
called smooth parametrizations or smooth families. A plot R → X is called
a smooth path. A map of sets with diffeology that is a morphism of diffeological
spaces is called diffeological or smooth when it is clear from the context that
“smooth” refers to the diffeology.

Example 2.1.3. Here are some of the most basic examples for diffeologies:

(a) The fine diffeology, or discrete diffeology, or smallest diffeology on a
set X is the diffeology for which the plots are the locally constant maps.1

(b) The coarse diffeology, or indiscrete diffeology, or trivial diffeology, or
largest diffeology on a set X is the diffeology for which all maps are plots.

(c) Every topological space X is equipped with the continuous diffeology for
which the plots are the continuous maps.

(d) Every smooth finite-dimensional manifold M is equipped with the manifold
diffeology or smooth diffeology for which the plots are the smooth, that
is, infinitely often differentiable maps.

Definition 2.1.1 is the original definition of diffeological spaces that conveys the
geometric idea and can be easily applied to concrete situations. For general consid-
erations, however, it is useful to rephrase the definition in the language of sheaves.

Let Eucl denote the category which has all open subsets of euclidean spaces
Rn, n ≥ 0 as objects and all smooth maps as morphisms. Open covers define a
Grothendieck pretopology, that is, the following three conditions are satisfied: (i)
Isomorphisms are covers. (ii) The cover of a cover is a cover. (iii) The pullback of
a cover along a smooth map is a cover.

Definition 2.1.4. The small category Eucl together with the Grothendieck topology
generated by the pretopology of open covers will be called the site of euclidean
spaces.

The technicalities of Grothendieck topologies will not be important here, since
sheaves on Eucl can be defined in the same way as for topological spaces. Eucl is
subcanonical, which means that for every cover {Ui → U}, the diagram

∐
i,j Ui ×U Uj

∐
i Ui U (2.1)

is a coequalizer. The pullback Ui ×U Uj = Ui ∩ Uj is the intersection, so that the
coequalizer can be interpreted geometrically as glueing the open subsets Ui along
their intersections. A sheaf is a contravariant functor that preserves this glueing.

1In [BH11, Example (2), p. 5794] it is stated incorrectly that the discrete diffeology is given by
the constant maps.
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Definition 2.1.5. A functor F : Euclop → C is a sheaf if

F (U)
∏

i F (Ui)
∏

i,j F (Ui ×U Uj)

is an equalizer for every open cover {Ui → U}. A functor G : Eucl→ D is a cosheaf
if Gop : Euclop → Dop is a sheaf.

Terminology 2.1.6. A faithful functor | | : C → Set, X → |X| is called a
concrete structure. |X| is called the underlying set. A category with a concrete
structure is called a concrete category.

Practically, the objects of a concrete category are sets with structure and the
morphisms are maps of sets that respect this structure. Most of the categories we
first learn about are concrete. When C has a terminal object, the concrete structure
is often given by the functor of points X 7→ C(∗, X). When the concrete structure
is obvious, the notation | | is often omitted by abuse of notation. For example, in
the Definition 2.1.1 of diffeological spaces, we wrote p : U → X, where the domain
should really be denoted by |U |, the set underlying the euclidean space U ∈ Eucl.

Proposition 2.1.7. The site Eucl is concrete, which means that the following
properties hold:

(i) Eucl has a terminal object ∗.

(ii) The functor of points | | : Eucl→ Set, U 7→ Eucl(∗, U) is faithful.

(iii) For every cover {Ui → U}, the induced map of sets
∐

i |Ui| → |U | is surjective.

Proof. R0 is the terminal object. Property (ii) follows from the definition of smooth
maps and (iii) from the definition of open covers.

Proposition 2.1.8. Let S be a set. Then the presheaf

S̄ : Euclop −→ Set

U 7−→ Set
(
|U |, S

)
.

is a sheaf.

Proof. Let {Ui → U} be an open cover. By Proposition 2.1.7 (iii), the map
∐

i |Ui| →
|U | is surjective. In the category of sets every epimorphism is effective, so that∐

i |Ui| ×|U |
∐

j |Uj|
∐

i |Ui| |U | (2.2)

is a coequalizer. The set on the left can be rewritten as∐
i|Ui| ×|U |

∐
j|Uj| ∼=

∐
i,j|Ui| ×|U | |Uj|

∼=
∐

i,j|Ui ×U Uj| ,
(2.3)

where we have first used that in Set pullbacks commute with coproducts and then
that the functor of points preserves limits.
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By applying the functor Set( , S) to the coequalizer (2.2) and using (2.3), we
obtain the diagram

S̄(U)
∏

i S̄(Ui)
∏

i,j S̄(Ui ×U Uj) .

Since (2.1) is a coequalizer and since the hom-functor Set( , S) maps colimits to
limits, this is an equalizer diagram. We conclude that S̄ is a sheaf.

Let X : Euclop → Set be a presheaf and U ∈ Eucl. By applying X to a point
∗ u→ U , we obtain a map X(u) : X(U) → X(∗), which we can evaluate at all
p ∈ X(U). This gives rise to the map

αU : X(U) −→ Set
(
|U |, X(∗)

)
p 7−→

(
(∗ u→ U) 7→ X(u)(p)

)
.

(2.4)

For every smooth map f : U → V in Eucl and every q ∈ X(V ) we have

X(u)
(
X(f)(q)

)
=
(
X(u) ◦X(f)

)
(q)

= X(f ◦ u)(q)
= X

(
|f |(u)

)
(q) ,

where |f | : |U | → |V | maps the point ∗ u→ U to ∗ u→ U
f→ V . This relation can be

expressed by the commutative diagram

X(V ) X(U)

Set
(
|V |, X(∗)

)
Set
(
|U |, X(∗)

)
X(f)

αV αU

|f |∗

(2.5)

which shows that αU is natural in U . In other words, we have a morphism

α : X −→ X(∗)

of presheaves, where X(∗) is defined as in Proposition 2.1.8.

Definition 2.1.9. A presheafX : Euclop → Set is concrete if α is a monomorphism,
that is, if the maps αU defined in (2.4) are injective for all U ∈ Eucl. A sheaf is
concrete if it is concrete as a presheaf. A morphism between concrete sheaves is a
morphism of the underlying presheaves.

Example 2.1.10. The sheaf S̄ of Proposition 2.1.8 is trivially concrete.

Theorem 2.1.11. The category of diffeological spaces is equivalent to the category
of concrete sheaves on Eucl.

Proof. Let X(U) ⊂ Set
(
|U |, |X|

)
, U ∈ Eucl be a diffeology on the set |X|. In a first

step, we extend U 7→ X(U) to a presheaf. Axiom (iii) of Definition 2.1.1 implies that
for every smooth map f : U → V , the pullback |f |∗ : Set(|V |, |X|) → Set(|U |, |X|)
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restricts to a map X(f) : X(V ) → X(U). The functoriality of |f |∗ implies the
functoriality of X(f). It follows that X is a presheaf on Eucl.

Next we observe that, by Axiom (i) of Definition 2.1.1, all constant maps are
plots, which implies that X(R0) = |X|, where, for clarity, we denote the terminal
object in Eucl by R0 ≡ ∗. It follows that the presheaf is concrete. From Axiom (ii)
of Definition 2.1.1 it follows that X is a sheaf.

Let Y (U) ⊂ Set
(
|U |, |Y |

)
, U ∈ Eucl be a diffeology on |Y |. A map φ : |X| → |Y |

is a morphism of diffeological spaces if and only if for all U ∈ Eucl the pushforward
φ∗ : Set

(
|U |, |X|

)
→ Set

(
|U |, |Y |

)
restricts to a map φ̂U : X(U)→ Y (U). Since the

pushforward φ∗ commutes with the pullback |f |∗ : |U | → |V | for all smooth maps
f : U → V , φ̂U is natural in U . In other words, φ̂ : X → Y is a morphism of
presheaves. Since the pushforward is a functorial, so is φ 7→ φ̂. We conclude that
we have constructed a functor from diffeological spaces to concrete sheaves.

For every point u : R0 → U , we have the commutative diagram

X(U) Y (U)

Set
(
|U |, |X|

)
Set
(
|U |, |Y |

)
X(R0) Y (R0)

φ̂U

X(u) Y (u)
φ∗

evu evu

φ=φ̂R0

where evu is the evaluation of a map p : |U | → |X| at u. Since this is commutative
for every u, it follows that the morphism of presheaves φ̂ is uniquely determined by φ
and that every φ̂ arises in this way. We conclude that our functor from diffeological
spaces to concrete sheaves is full and faithful.

In the last step, we have to show that the functor is essentially surjective. Let
X be a concrete sheaf on Eucl. Consider the collection of maps

αU
(
X(U)

)
⊂ Set

(
|U |, X(R0)

)
.

for all U ∈ Eucl. The commutative diagram (2.5) for the terminal morphism t :
U → R0 is

X(R0) X(U)

Set
(
R0, X(R0)

)
Set
(
|U |, X(R0)

)
X(t)

αR0 αU

|t|∗

Since α∗ is an isomorphism, it follows that the image of |t|∗ is contained in the
image of αU . Since every constant map |U | → X(R0) factors as |U | → R0 → X(R0)
through the terminal map, the constant maps are the image of |t|∗ : Set

(
R0, X(R0)

)
→

Set
(
|U |, X(R0)

)
. We conclude that αU(X(U)) contains all constant maps, so that

Axiom (i) of Definition 2.1.1 is satisfied. Axiom (ii) of Definition 2.1.1 follows from
the sheaf property of X and Axiom (iii) from diagram (2.5). We conclude that
αU
(
X(U)

)
, U ∈ Eucl is a diffeology on X(R0). Since αU is a monomorphism for all

U , there is a natural bijection X(U) ∼= αU(U). This shows that the concrete sheaves
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U → X(U) and U 7→ αU(U) are isomorphic. Since the second sheaf arises from a
diffeological space, it follows that every concrete sheaf X is isomorphic to one in
the image of the functor. This shows that the functor from diffeological spaces to
concrete sheaves is essentially surjective, which concludes the proof.

Theorem 2.1.11 and its constructive proof enables us to go back and forth be-
tween two equivalent descriptions of diffeological spaces that each has its advantages.
The geometric definition in terms of plots is best suited for explicit computations,
the descriptions of examples, and the relation to the traditional methods of analysis
and differential geometry. The categorical definition in terms of concrete sheaves is
best suited for abstract structural considerations, the efficient understanding of uni-
versal properties, and the relation to more recent developments such as in homotopy
theory or higher geometric structures.

2.1.2 Categorical properties of diffeological spaces

As is the case for every category of concrete sheaves, Dflg is a quasi-topos [BH11,
Thm. 5.25]. This implies that it has a number of good categorical properties.

Proposition 2.1.12. As any category of concrete sheaves on a concrete site, Dflg
has the following properties:

(a) Dflg has all small limits and small colimits.

(b) Dflg is locally cartesian closed, that is, for every object X in Dflg the overcat-
egory Dflg ↓X is cartesian closed.

(c) Strong monomorphisms and strong epimorphisms are effective.

(d) (Strong) monomorphisms and (strong) epimorphisms are stable under pullback.

(e) Dflg is quasiadhesive, that is, the pushout of a strong monomorphism is a
strong monomorphism and the pushout square is a pullback square.

(f) The initial object is strict, that is, every morphism X → ∅ is an isomorphism.

(g) Coproducts are disjoint, that is, X → X ⊔ Y ← Y are monomorphisms and
X ×X⊔Y Y ∼= ∅.

(h) The functor of points Dflg → Set, X → Dflg(∗, X) is faithful. It has a left
and a right adjoint, so that it preserves limits and colimits.

Before we explain the statements of Proposition 2.1.12 in more detail, we state
an additional property that is a consequence of the site Eucl being subcanonical.

Proposition 2.1.13. Every representable presheaf on Eucl is a concrete sheaf.

Proof. Let V be an object of Eucl. Since the functor of points is faithful, the map

Eucl(U, V ) −→ Set(|U |, |V |) = Set
(
|U |,Eucl(∗, V )

)
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is injective for all U . This shows that the presheaf U 7→ Eucl(U, V ) represented by
V is concrete. Eucl is subcanonical, which means that (2.1) is a coequalizer. Since
the hom-functor preserves colimits, applying Eucl( , V ) yields an equalizer, so that
Eucl( , V ) is a sheaf.

Let I : Dflg→ SetEucl
op

denote the inclusion of concrete sheaves into the category
of presheaves. Being a concrete presheaf is a property of a presheaf, so that I is
injective. By definition, a morphism of concrete sheaves is a morphism of presheaves,
so that I is full and faithful. Proposition 2.1.13 states that the Yoneda embedding
Y : Eucl → SetEucl

op

, U 7→ Eucl( , U) takes its values in the image of I, so that we
have a commutative diagram

SetEucl
op

Eucl Dflg

Y

y

I

where y is the Yoneda embedding with restricted codomain. The sheaf yU is given
by (yU)(V ) = (YU)(V ) = Eucl(V, U).

Proposition 2.1.14. The functor y : Eucl→ Dflg is injective, full, and faithful.

Proof. Since the Yoneda embedding is injective, so is y. As already explained, I is
full and faithful. By the Yoneda lemma, Y is full and faithful. Since both I and Y
are full and faithful and Iy = Y , it follows that y is full and faithful.

Since I is full and faithful, the Yoneda lemma implies that the evaluation of the
concrete sheaf X ∈ Dflg on U ∈ Eucl is given by

X(U) ∼= SetEucl
op

(Y U, IX) ∼= SetEucl
op

(IyU, IX)
∼= Dflg(yU,X) .

(2.6)

It follows that limits in Dflg are computed pointwise and that I preserves limits.
By the adjoint functor theorem, I has a left adjoint,

K : SetEucl
op

Dflg : I , (2.7)

which was computed and studied in [BH11, Sec. 5.3]. Explicitly, K is given by
a procedure called concretization followed by the Grothendieck plus construction.
From this construction it follows that if a presheaf on Eucl is already a concrete
sheaf, that is, if it is in the image of I, then both constructions do nothing. It
follows that the left adjoint K is a retract, KI ∼= idDflg, which implies that the
colimit of a diagram X : I→ Dflg can be computed as

colim
i∈I

Xi
∼= colim

i∈I
KIXi

∼= K colim
i∈I

IXi ,

that is, by first computing the colimit in presheaves and then applying K. As a
further consequence, it can be shown that y is dense:
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Proposition 2.1.15 (Prop. 51 in [BH11]). Every X ∈ Dflg is the colimit of y ↓X →
Eucl→ Dflg, which we will write as

X ∼= colim
yU→X

yU . (2.8)

Proof. As is the case for any presheaf, IX ∼= colimY U→IX Y U . Since I is full and
faithful, the morphisms IyU → IX are in bijection with the morphisms yU → X,
so that the colimit can be written as IX ∼= colimyU→X IyU . From this, we get

X ∼= KIX ∼= K colim
yU→X

IyU ∼= colim
yU→X

KIyU

∼= colim
yU→X

yU ,

where we have used that K is a left ajoint, so that it preserves colimits.

Terminology 2.1.16. The category y ↓X is called the category of plots of X.

Warning 2.1.17. It is customary and convenient to identify notationally the do-
main of a plot U ∈ Eucl with the diffeological space yU ∈ Dflg. In this chapter,
we deal with subtleties of Kan extensions along y where this identification would
invite wrong proofs by notation (a trap the author has fallen into more than once).
Therefore, we will always spell out the embedding y.

2.1.3 Categorical properties in terms of plots

In Proposition 2.1.12, we have seen a long list of good properties of the category
Dflg. In this section we will spell out some of the properties explicitly. For this the
following fact is useful.

Remark 2.1.18. The diffeologies on a given set X are partially ordered by inclusion
D ⊂ D′ if D(U) ⊂ D′(U) for all U ∈ Eucl. The diffeology D is then called smaller
or finer than D′ and D′ larger or coarser than D. This is in analogy to topology,
where a topology T on X is finer than T ′, if there are fewer T -continuous maps
than T ′-continuous maps to X. With the partial order the diffeologies on X form
a complete lattice [IZ13, Sec. 1.25]. The infimum of a family {Di} is given by the
intersection Dinf(U) :=

⋂
iDi(U). The supremum is given by the intersection of all

diffeologies that contain all Di.

Functional diffeology Proposition 2.1.12 states that Dflg is locally cartesian
closed. This means that for every object X ∈ Dflg, the overcategory Dflg ↓X is
cartesian closed. This means thatDflg ↓X has all finite products and all exponential
objects. As is the case in any overcategory, the product in Dflg ↓X is the pullback
over X. That is, the product of A → X and B → X is A ×X B → X. The empty
product, which is the terminal object, is idX : X → X. The exponential by A→ X
is the right adjoint to the functor A ×X . Having a right adjoint implies that
A×X preserves colimits.

When X = ∗, then Dflg ↓ ∗ ∼= Dflg and the fiber product is the product in Dflg.
We denote the exponential objects in Dflg by

Dflg(X, Y ) ≡ Y X
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and call them the diffeological mapping spaces. The diffeology, which is deter-
mined by the universal property

Dflg
(
yU,Dflg(X, Y )

) ∼= Dflg(yU ×X, Y ) ,

is called the functional diffeology. Its plots are the smooth homotopies of mor-
phisms of diffeological spaces.

Discrete and indiscrete diffeology By Proposition 2.1.12, the forgetful functor
Dflg → Set, X 7→ Dflg(∗, X) has left and right adjoints. The left adjoint equips a
set S with the discrete diffeology, for which the plots are the locally constant maps.
The right adjoint equips S with the trivial diffeology, for which all maps are plots.
In other words, the discrete diffeology on a set is the free diffeology, the indiscrete
diffeology is the cofree diffeology.

Notation 2.1.19. Let S be a set. We will denote by S̈ the discrete diffeology on
S and by S̄ the indiscrete diffeology. (The dots remind us of the discrete points,
the bar of its opposite.) Since the indiscrete diffeology on S is the sheaf defined in
Proposition 2.1.8, we use the same notation. For the set |X| underlying a diffeolog-

ical space X, we will, for lighter notation, drop the vertical bars and write Ẍ ≡ ¨|X|
and X̄ ≡ |X|.

Inductions and subductions Some of the statements of Proposition 2.1.12 in-
volve strong monomorphisms and epimorphisms, which we will explain in more
detail.

Proposition 2.1.20. A smooth map X → Y of diffeological spaces is a monomor-
phism (an epimorphism) if and only if it is injective (surjective).

Proof. Let f : X → Y be a morphism of diffeological spaces. The forgetful functor
Dflg→ Set is faithful, so it reflects monomorphisms and epimorphisms. To “reflect”
means that, if the map of sets |f | : |X| → |Y | is a monomorphism or epimorphism,
then so is f . By Proposition 2.1.12, the functor of points preserves limits, so that
it preserves monomorphisms, and it preserves colimits, so that it preserves epimor-
phisms. That is, if f is a monomorphism or an epimorphism, then so is |f |. Since
the monomorphisms (epimorphisms) in Set are the injective (surjective) maps, the
proposition follows.

A morphism i : X → Y is said to have the right lifting property with respect
to a morphism p : A→ B or, equivalently, p is said to have the left lifting property
with respect to i, if every commutative diagram

A X

B Y

p

f

i

g

∃ (2.9)

has a diagonal lift.
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Example 2.1.21. In Set, all surjective maps have the left lifting property with
respect to all injective maps.

We can now define three important properties of monomorphisms and epimor-
phisms. While this makes sense in any category, it will be of particular relevance in
diffeological spaces.

• A monomorphism is called strong, if it has the right lifting property with
respect to all epimorphisms. Dually, an epimorphism is called strong if it has
the left lifting property with respect to all monomorphisms.

• A monomorphism X → Y is called regular if it is the equalizer X → Y ⇒ Z
of a pair of parallel morphisms. Dually, an epimorphism Y → Z is regular if
it is the coequalizer X ⇒ Y → Z of a pair of parallel arrows.

• A monomorphism X → Y is called effective if X → Y ⇒ Y ⊔X Y is an
equalizer. Dually, an epimorphism X → Y is called effective if X ×Y X ⇒
X → Y is a coequalizer.

Proposition 2.1.22. Let f : X → Y be a monomorphism or an epimorphism of
diffeological spaces. We have the following implications: f is effective⇒ f is regular
⇒ f is strong.

Proof. Since an effective monomorphism is by definition an equalizer, it is regular.
For a regular monomorphism, it follows from the universal property of the equalizer
that it has the right lifting property with respect to epimorphisms. The proof for
epimorphisms is dual.

Proposition 2.1.23. Strong monomorphisms and strong epimorphisms have the
following properties:

(i) The composition of strong monomorphisms is a strong monomorphism. If f ◦g
is a strong monomorphism, then g is a strong monomorphism.

(ii) The composition of strong epimorphisms is a strong epimorphism. If f ◦ g is
a strong epimorphism, then f is a strong epimorphism.

(iii) If f ◦ g is an isomorphism, then f is a strong epimorphism and g is a strong
monomorphism. In other words, split monomorphisms and split epimorphisms
are strong.

(iv) If a strong monomorphism is an epimorphism, then it is an isomorphism. Du-
ally, if a strong epimorphism is a monomorphism, then it is an isomorphism.

Proof. The proof is a straightforward exercise in basic category theory.

Definition 2.1.24. Let Y be a diffeological space and S → |Y | a map of sets, which
we can view as morphism f : S̄ → Ȳ , where we recall that S̄ and Ȳ denotes the
indiscrete diffeology. Then

f ∗Y := Y ×Ȳ S̄
is the pullback diffeology on S.
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Proposition 2.1.25. Let Y be a diffeological space and S → |Y | a map of sets,
which we can view as morphism f : S̄ → Ȳ . The following are equivalent:

(i) f is a monomorphism, that is, injective.

(ii) f ∗Y → Y is a strong monomorphism.

Proof. Assume that the map f ∗Y → Y is a strong monomorphism. It follows that
the underlying map of sets is injective. We conclude that (ii) implies (i).

Assume that f is injective, so that f : S̄ → Ȳ is a monomorphism. Consider a
commutative diagram

A Y ×Ȳ S̄ S̄

B Y Ȳ

f∃φ∃ψ

where A → B is an epimorphism. Since f is a monomorphism and A → B an
epimorphism, a unique lift φ exists in Set. Since the diffeology on S̄ is cofree, φ
is smooth. The existence of a unique lift ψ follows from the universal property of
the pullback. We conclude that f ∗Y → Y is a strong monomorphism, so that (i)
induces (ii).

Corollary 2.1.26. A monomorphism f : X → Y of diffeological spaces is strong if
and only if the morphism X → f ∗Y given by the universal property of the pullback
is an isomorphism.

Corollary 2.1.27. Let Ω = {0, 1} equipped with the indiscrete diffeology. Then there
is a natural bijection between the images of strong monomorphisms to X (strong
subobjects) and morphisms X → Ω.

Proof. Let t : ∗ → Ω, ∗ 7→ 1 be the “truth” map. The image of a monomorphism
f : A → X can be identified with the characteristic function χf : X → Ω that
maps x to 1 if it is in the image of f and to 0 otherwise. The pullback of t along
χf is isomorphic to A. The only difference to an elementary topos is that the
monomorphism must be strong.

Definition 2.1.28. Let X be a diffeological space and |X| → S a map of sets,
which we view as morphism f : Ẍ → S̈, where we recall that S̈ and Ẍ denotes the
discrete diffeology. Then

f∗X := S̈ ⊔Ẍ X

is the pushforward diffeology on S.

Proposition 2.1.29. Let X be a diffeological space and |X| → S a map of sets,
which we can view as morphism f : Ẍ → S̈. The following are equivalent:

(i) f is an epimorphism, that is, surjective.

(ii) X → f∗X is a strong epimorphism.

Proof. The proof is dual to that of Proposition 2.1.25.
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Corollary 2.1.30. An epimorphism f : X → Y of diffeological spaces is strong if
and only if the morphism f∗X → Y given by the universal property of the pushout
is an isomorphism.

Terminology 2.1.31. The pullback diffeology along a monomorphism is also called
the subspace diffeology, the pushforward diffeology along an epimorphism the
quotient diffeology.

Proposition 2.1.32. The pullback diffeology f ∗Y is the largest diffeology on the set
|X| such that |f | is smooth. The pushforward diffeology f∗X is the smallest diffeology
on |Y | such that |f | is smooth.

Proof. LetX ′ be a diffeology on the set |X| such that |f | is smooth. By the universal
property of the pullback, there is a morphism X ′ → f ∗Y , which is the identity on
|X|. It follows that X ′(U) ⊂ (f ∗X)(U) for all U ∈ Eucl.

Let Y ′ be a diffeology on the set |Y | such that |f | is smooth. By the universal
property of the pushforward, there is a morphism f∗X → Y ′, which is the identity
on |Y |. It follows that the (f∗X)(U) ⊂ Y ′(U) for all U ∈ Eucl.

A more elaborate proof can be found in in [IZ13, Sec. 1.26] for the pullback
diffeology and in [IZ13, Sec. 1.43] for the pushforward diffeology.

Terminology 2.1.33. A monomorphism f : X → Y of diffeological spaces such
that the diffeology on X is the pullback diffeology is called an induction [IZ13,
Sec. 1.29]. If f is an epimorphism such that the diffeology on Y is the pushforward
diffeology, it is called a subduction [IZ13, Sec. 1.46].

Corollary 2.1.26 shows that the inductions are the strong monomorphisms and
Corollary 2.1.30 that the subductions are the strong epimorphisms. This was first
proved in Prop. 34 and Prop. 37 of [BH11].

Proposition 2.1.34. The following are equivalent:

(i) f : X → Y is a subduction.

(ii) A map p : |U | → |Y | is a plot if and only if every u0 ∈ U has an open
neighborhood U0 ⊂ U such that the restriction of p to |U0| lifts to a plot of X,
that is, there is a plot q : |U0| → |X| such that p||U0| = |f | ◦ q.

Proof. Assume that f is surjective. Let us denote by D(U) ⊂ Set(|U |, |Y |) for all
U ⊂ Eucl the maps that have the local lifting property of (ii). Since f is surjective,
D(U) contains all constant maps. Since the lifting property is local, p : |U | → |X|
is in D(U) if and only if all its restrictions p||Ui| to an open cover {Ui → U} have
the lifting property. If p has the lifting property and φ : V → U is a smooth map,
a local lift q : |U0| → |X| for U0 an open neighborhood of u0 = φ(v0) gives rise
to a local lift (q ◦ |φ|)||φ−1(U0)| on the open neighborhood V0 = φ−1(U0) of v0. We
conclude that D(U) is a diffeology on |Y |.

Let f : X → Y be a morphism of diffeological spaces. By definition this means
that for every plot q : |U | → |X|, the map p = |f | ◦ q : |U | → |Y | is a plot of Y .
Since p has the lifting property, p ∈ D(U). We conclude that D(U) ⊂ Y (U). By
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Proposition 2.1.32 the pushforward diffeology is the smallest diffeology such that |f |
is smooth. We conclude that if |f | is surjective, then D is the pushforward diffeology.

Assume (ii). Since every constant map |U | → |Y | is a plot, it has the local lifting
property, which implies that f is surjective. It follows that D(U) is the pushforward
diffeology, so that (i) follows.

Assume (i). This means that f is surjective and Y has the pushforward diffeology.
We have proved that the pushforward diffeology is D, so that (ii) follows.

It follows from Equation (2.6) that a plot p : |U | → |Y | can be identified with
a morphism p : yU → Y . The local lifting property of subductions can then be
expressed by the commutative diagram of diffeological spaces

yU0 X

∗ yU Y

q

f

u0 p

for all u0 ∈ U and an open neighborhood U0 ⊂ U of u0.

Proposition 2.1.35. Let i : Y → Z be an induction. Let X be a diffeological space
and f : |X| → |Y | a map of sets. If the composition |i| ◦ f : |X| → |Z| is smooth,
that is, a morphism i ◦ f : X → Z of diffeological spaces, then f is smooth.

Proof. Recall that Ẍ denotes the set X with the discrete diffeology, which is the free
diffeology on |X|, so that f can be identified with a unique morphism f : Ẍ → Y .
Moreover, there is a morphism Ẍ → X with idX as underlying map of sets, which
is surjective so that it is an epimorphism. Let φ : X → Z be the morphism
of diffeological spaces with underlying map of sets |φ| = |i| ◦ f . We have the
commutative diagram

Ẍ Y

X Z

f

i

i◦f

∃

An induction is a strong monomorphism, so that there is a diagonal lift. This shows
that f is smooth.

Proposition 2.1.36. Let r : X → Y be a subduction. Let Z be a diffeological space
and f : |Y | → |Z| a map of sets. If the composition f ◦ |r| : |X| → |Z| is smooth,
that is, a morphism f ◦ r : X → Z of diffeological spaces, then f is smooth.

Proof. The proof is dual to the proof of Proposition 2.1.35.

D-topology

Definition 2.1.37 (Sec. 2.8 in [IZ13]). The D-topology on a diffeological space is
the finest topology (on the underlying set) such that every plot is continuous.
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Explicitly, a subset Y ⊂ X is open in the D-topolgy if and only if for every plot
p : yU → X, the preimage p−1(Y ) ⊂ U is open. Every morphism of diffeological
spaces is continuous with respect to the D-topologies. An open subset S ⊂ X of
a diffeological space is naturally equipped with the subspace diffeology, so that the
inclusion i : S → X is an open induction.

The D-topology is determined by the smooth curves only, so that many different
diffeologies induce the same topology [CSW14, Thm. 3.7]. The discrete diffeology
induces the discrete topology. Mapping a diffeology onX to the induced topology is
left adjoint to mapping a topology to the continuous diffeology [CSW14, Prop. 3.3].
In general, neither the unit nor the counit of the adjunction is an isomorphism.

2.1.4 Computing limits and colimits

Computing limits in Dflg is straightforward, as the following result shows.

Proposition 2.1.38. The limit of a diagram X : I→ Dflg, i 7→ Xi is given by the
set limi∈I |Xi| with the diffeology for which a map p : |U | → limi |Xi| is a plot if and
only if the compositions with all maps of the limit cone,

|U | p−→ lim
i∈I
|Xi|

pri−→ |Xi| ,

are plots.

Proof. The functor of points X 7→ |X| = Dflg(∗, X) preserves limits, so that
| limiXi| ∼= limi |Xi|. Moreover, the sheaf of a diffeological space X is given by
X(U) = Dflg(yU,X). It follows that

(lim
i
Xi)(U) ∼= Dflg(yU, lim

i
Xi) ∼= lim

i
Dflg(yU,Xi)

∼= lim
i
Xi(U) .

In other words, a plot to the limit is given by a collection of plots to all Xi.

Example 2.1.39. Let X1
f→ Y

g← X2 be morphisms of diffeological spaces. A map
p : |U | → |X1 ×Y X2|, is a plot if and only if p1 = |pr1| ◦ p, p2 = |pr2| ◦ p, and
|f | ◦ p1 = |g| ◦ p2 are plots.

The computation of colimits is more involved. Every colimit can be computed
as a coproduct followed by a coequalizer [ML98, Thm. X.5.3], [KS06, Prop. 2.4], so
that it suffices to consider these two cases. We begin by a description of coproducts
in Dflg.

Proposition 2.1.40. The coproduct of a family of diffeological spaces {Xi}i∈I is
given by the coproduct of the underlying sets∣∣∐

iXi

∣∣ =∐i|Xi|

with the following diffeology. Let U ⊂ Rn, n ≥ 0 be an open subset. A map
p : |U | →

∣∣∐
iXi

∣∣ is a plot if and only if every u ∈ U has a neighborhood Ui ⊂ U
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such that the restriction of p to |Ui| factors through a plot pi : yUi → Xi. That is,
we have the following commutative diagram:

yUi Xi

yU
∐

iXi

pi

p

Proof. Let X =
∐

iXi and let p : yU → X be a plot. Since equipping Xi with the
induced topology is a left adjoint functor, it preserves coproducts. It follows that
the induced topology on X is the coproduct topology. By definition of the induced
topology, p : yU → X is continuous, so that Ui := p−1(Xi) is open and closed, so
that we can identify U with

∐
i Ui. The restriction of p to Ui factors through a

plot pi : yUi → Xi. Since a point u ∈ U is contained in some Ui, we obtain the
commutative diagram of the proposition.

Remark 2.1.41. Since every U ∈ Eucl is second countable, it follows that only
countably many of the Ui in Proposition 2.1.40 can be non-empty. In particular,
the image of a plot is concentrated in countably many components of the coprod-
uct. Moreover, if U is connected, then the image of p is concentrated in a single
component Xi.

Proposition 2.1.42. The coequalizer of parallel arrows X ⇒ Y of diffeological
spaces is given by the coequalizer of sets,

|X| |Y | C ,h

with the pushforward diffeology h∗Y on C.

Proof. Since the forgetful functor X → |X| preserves colimits, the underlying set
of the coequalizer is the coequalizer of the underlying sets. The morphism h of the
coequalizer is a regular epimorphism, so a subduction.

The colimit of any functor X : I → Dflg, i → Xi can be computed by a
coequalizer and products as [ML98, Thm. X.5.3]∐

f∈Mor(I)

Xdomf

∐
i∈I
Xi colimX , (2.10)

where the two arrows on the left are given by the morphisms

Xdomf

Xdomf

Xcodomf

id

Xf

for all morphisms f of I. We can now combine Propositions 2.1.40 and 2.1.42 which
yields the following procedure to compute a colimit in Dflg.
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Proposition 2.1.43. The colimit of a functor X : I→ Dflg is the colimit of sets,

| colim
i

Xi| = colim
i
|Xi|

with the following diffeology. Let U ⊂ Rn, n ≥ 0 be an open subset. A map
p : |U | → | colimX| is a plot if and only if every u0 ∈ U has a neighborhood U0 ⊂ U
such that the restriction of p to U0 factors through a plot p0 : yU0 → Xi of some Xi.
That is, we have a commutative diagram

yU0 Xi

yU colimiXi

p0

p

Remark 2.1.44. The colimit in sets in Proposition 2.1.43 is given explicitly by the
quotient

| colim
i

Xi| =
∣∣∐

i∈IXi

∣∣ /∼ ,
where ∼ is the equivalence relation generated by the relations

x ∼ y :⇔ ∃ f ∈ Mor(I) : (Xf)x = y ,

for all x, y ∈
∐

i |Xi|.

Example 2.1.45. Let X
f← Z

g→ Y be morphisms of diffeological spaces. The
pushout X ⊔Z Y is the coequalizer

Z X ⊔ Y X ⊔Z Y
f

g

h .

A map p : |U | → |X ⊔Z Y | is a plot if every u0 ∈ U has a neighborhood U0 such
that there is a plot q : yU0 → X or a plot q : yU0 → Y such that p|U0 = h ◦ q.

2.2 The tangent functor

2.2.1 Differential forms and tangent vectors

The de Rham complex A large part of the structure of differential geometry is
local, which means that they are first defined on the open subsets U ⊂ Rn of the
charts and then glued together on an atlas. For example, the de Rham complex of
differential forms is defined on U as the free graded antisymmetric C∞(U)-algebra
generated by the coordinate differentials {du1, . . . , dun} with the usual differential.
With the pullback of forms along smooth maps f : U → V between charts, this
yields a contravariant functor U → Ω(U) from Eucl to differential graded rings.

A manifold is obtained by glueing together its charts, which can be written as

M ∼= colim
U→M

U ,
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where the colimit in manifolds is taken over the maximal atlas. The glueing of the
local de Rham complex model to the de Rham complex on the manifold can be
written as

Ω(M) ∼= lim
U→M

Ω(U) ,

where the colimit in manifolds becomes a limit in differential graded algebras because
Ω is contravariant.

We have proved in Proposition 2.1.15, that a diffeological space X is given by
the colimit

X ∼= colim
yU→X

yU ,

where the colimit is taken over the category y ↓X of plots of X. In other words, a
diffeological spaces is obtained by glueing together its plots. This suggest that for
the definition of the de Rham complex of X we simply replace the charts by plots,

Ω(X) := lim
yU→X

Ω(U) , (2.11)

where the limit in differential graded rings is taken over y ↓X.
Explicitly, an element α ∈ Ω(X) is given by a family {αp}p:yU→X of forms αp ∈

Ω(U) on the domains of all plots p : yU → X such that for every smooth map
f : V → U ,

f ∗αp = αf∗p ,

where f ∗p = p ◦ f : yV → X is the pullback plot. The differential and ring
structure on Ω(X) is given by the differential and ring structure of the forms αp.
This explicit description is the standard definition of the de Rham complex on
diffeological spaces [IZ13, Sec. 6.28].

The tangent functor The tangent functor is given on the domains U ⊂ Rn of
charts by

TU := U × Rn

and on smooth maps f : U → V ⊂ Rm by

Tf : TU −→ TV

(u, u̇i) 7−→
(
f(u),

∂fα

∂ui
u̇i
)
,

where we use the summation convention for the repeated index i and where 1 ≤
α ≤ m. Its extension to a manifold M is given by

TM ∼= colim
U→M

TU ,

where the colimit in smooth manifolds is taken over the charts of the maximal atlas
of M . Since Mfld is not cocomplete it has to be shown that this colimit exists.

For a diffeological space X we replace the category of charts by the category of
plots and obtain the definition

TX := colim
yU→X

yTU , (2.12)
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where the colimit is taken in diffeological spaces.
Since the colimit (2.12) defining the tangent functor is taken in diffeological

spaces, the tangent fibers are generally not vector spaces. The geometric reason is
that the tangent fiber at x is an infinitesimal model of the space at x. More precisely,
TxX describes the directions in which smooth paths can leave or enter x with finite
velocity. The vector space structure of the tangent fibers of a manifold reflects the
fact that the space itself looks locally like a vector space.

Other definitions of the tangent functor In the literature, a number of in-
equivalent definitions for the tangent functor have been used, that force the fiber to
be a vector space. For an overview see [CW16]. For a diffeological space that is not
a manifold, forcing the tangent fiber to be a vector space obscures some of the local
geometric information. For example, the tangent vector space at 0 of three smooth
lines through the origin of R2 is R3, whereas the tangent fiber as defined in (2.12)
is an accurate local model of the diffeological space.

There is another class of definitions of tangent vectors and tangent bundles that
involve the smooth real-valued functions on the diffeological space. An external
tangent vector is a derivation of the germ of smooth functions at a point. Many
definitions require such a tangent vector to be represented by a smooth path and use
its action on functions to define the tangency condition of two paths [Vin08,GW21].
This includes the original definition of Souriau [Sou70] and definitions that are used
in the context of diffeological groups [Les03,Mag18].

We avoid involving smooth functions on the diffeological spaces in our strictly
internal definition of tangent vectors for two reasons. The first reason is that this
would be at odds with the conceptually simple categorical approach we use. The
second reason is that there are many interesting spaces, such as noncommutative
tori [DI85], that have a rich diffeological structure, but a poor ring of functions on
them. In fact, non-commutative tori turn out to be elastic, which shows that there
is no reason to exclude them here by using a definition of tangent space that relies
on a good supply of smooth functions on the diffeological space.

2.2.2 The tangent functor as left Kan extension

Recall that, if it exists, the pointwise left Kan extension of a functor F : Eucl→ C

along the inclusion y : Eucl→ Dflg evaluated at X ∈ Dflg is given by the colimit

(Lany F )X = colim(y ↓X −→ Eucl
F−→ C)

= colim
yU→X

FU ,
(2.13)

where y ↓X → Eucl maps a plot yU → X to its domain U [ML98, Sec. X.5]. We
see that Ω(X) as defined in (2.11) is the pointwise left Kan extension of the de
Rham functor on euclidean spaces to diffeological spaces. Similarly, TX as defined
in (2.12) is the pointwise left Kan extension

T = Lany yT̂ : Dflg −→ Dflg ,

where we put a hat on the tangent functor of euclidean spaces

T̂ : Eucl −→ Eucl
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for disambiguation.
The realization that Ω(X) and TX are given by a pointwise left Kan extension

leads to a number of useful observations.

Proposition 2.2.1. Let F : Eucl→ C be a functor to a cocomplete category. Then
the diagram

Eucl C

Dflg

y

F

Lany F

commutes, that is,
(Lany F )yU = FU (2.14)

for all U ∈ Eucl.

Proof. Since y is full and faithful, the statement follows from [ML98, Cor. 3, Sec. X.3]
or from [Kel05, Prop. 4.23].

Warning 2.2.2. It is common to denote the functor and its Kan extension with the
same letter, “FX = (Lany F )X”, assuming that it is clear from the context or the
type of argument which one is meant. If in addition, the embedding y : Eucl→ Dflg
is omitted from the notation, the last statement looks like a tautology, “FU = FU”,
which would be a wrong “proof” by notation.

A natural transformation αU : FU → GU of functors F,G : Eucl → C induces
a morphism of the colimits (2.13) defining the pointwise left Kan extension. This
morphism is natural in X. The upshot is that the left Kan extension is a functor

Lany( ) : Fun(Eucl,C) −→ Fun(Dflg,C) ,

where Fun(D,C) denotes the category that has functors D→ C as objects and nat-
ural transformations as morphisms. Moreover, it follows from y : Eucl→ Dflg being
full and faithful that Lany( ) is full and faithful. An important case is the exten-
sion of endofunctors of euclidean spaces, such as the tangent functor, to diffeological
spaces.

Proposition 2.2.3. The pointwise left Kan extension defines a functor of the cat-
egories of endofunctors

L := Lany y( ) : End(Eucl) −→ End(Dflg) (2.15)

that is full and faithful.

By Proposition 2.1.43, the colimit (2.13) of the pointwise left Kan extension is
given as follows. As set it is given by the colimit of the underlying sets, which is the
set of equivalence classes

|(LF )X| =
∐

p:yU→X

|FUp|
/
∼ , (2.16)
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where we have used |yFUp| = |FUp| and where the equivalence relation is given as
follows. We say that an element ζu ∈ |FUp| is F -related to ηv ∈ |FVq| if there is
a smooth map f : U → V such that q ◦ y(f) = p and Ff ζu = ηv. Two elements
are related by ∼ if and only if they are connected by a finite zigzag of F -relations.
That is, ζ ∈ |FU | and η ∈ |FV | are equivalent if there is a sequence of elements
θi ∈ |FWi|, 1 ≤ i ≤ n and a commutative diagram of plots like

yU yW1 . . . yWn yV

X

f1

p

f2 fn fn+1

q

such that Ffi θ
i−1 = θi = Ffi+1 θ

i+1 for all 1 ≤ i ≤ n, where we set θ0 := ζ and
θn+1 := η. Note that the direction of any of the arrows fi in the diagram may be
reversed.

A map p : |U | → |(LF )X| is a plot if and only if for every point u0 ∈ U there is
a neighborhood U0 ⊂ U of u0, a plot q : yV → X, and a smooth map p0 : U0 → FV
such that the diagram

yU0 yFV

yU (LF )X

yp0

(LF )q

p

(2.17)

commutes, where we have used that (LF )yV = yFV by Proposition 2.2.1.

2.2.3 The bundle of cones

There is a number of endofunctors of euclidean spaces that are a natural structure
of the tangent functor, such as the bundle projection

πU : T̂U −→ U

(u, u1) 7−→ u ,

the zero section

0̂U : U −→ T̂U

u 7−→ (u, 0) ,

and the scalar multiplication

κ̂U : R× T̂U −→ T̂U(
r, (u, u1)

)
7−→ (u, ru1) .

Their pointwise left Kan extensions will be denoted by

πX := (Lπ̂)X : TX −→ X

0X := (L0̂)X : X −→ TX

κX := (Lκ̂)X : R× TX −→ TX
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The functoriality of L implies that commutative diagrams of π̂, 0̂, κ̂ get mapped
to commutative diagrams of π, 0, and κ. It follows that 0 is a section of π, πX ◦0X =
idX . The R-multiplication is a morphism of bundles, that is, the diagram

R× TX TX

X

κX

πX◦pr2 πX

commutes. The compatibility of the scalar multiplication with the multiplication
m : R × R → R can be expressed in terms of the following three commutative
diagrams:

(i) Associativity:

R× R× TX R× TX

R× TX TX

idR×κX

m×idTX κX

κX

(ii) Unitality:

{1} × TX R× TX

TX

∼=
κX

(iii) Compatibility of zeros:

{0} × TX R× TX

X TX

πX◦pr2 κX

0X

What is the geometric interpretation of these commutative diagrams? The map
πX : TX → X can be viewed as a bundle in a very general sense, since there are
generally no local trivializations. The fiber over a point x : ∗ → X is defined by

TxX := ∗ ×x,πXX TX .

Since x : ∗ → X is trivially an induction and since inductions are stable under
pullbacks, the natural morphism TxX → TX is an induction. In other words, TxX
is a diffeological subspace of TX. Since πX has the section 0X , it follows that πX is
a subduction, so that X is the diffeological quotient space obtained by identifying
all points of a fiber.

A subset of a real vector space that is invariant under the R-multiplication is
called an R-cone. Note that such a cone is generally not convex. If there is no
ambient vector space, we can axiomatize the properties of R-invariance as follows.

Definition 2.2.4. An abstract R-cone consists of a set V , a map κ : R× V → V ,
(α, v) = α · v, and a distinguished element 0 ∈ V , such that
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(i) α · (β · v) = (αβ) · v,

(ii) 1 · v = v,

(iii) 0 · v = 0,

for all α, β ∈ R and v ∈ V .

Properties (i), (ii), (iii) state that κ defines an action of the multiplicative monoid
of R on V , such that 1 ∈ R acts as identity, and 0 ∈ R maps all points to the tip of
the cone 0 ∈ V . The induced action of the group of units R× = R \ {0} is generally
not free.

Remark 2.2.5. Assume that V is a Hausdorff topological space and κ continuous.
Let

Stab(v) := {α ∈ R | α · v = v for all v ∈ V }
denote the stabilizer of v ∈ V . Assume that q ∈ Stab(v) of norm |q| ≠ 1. If |q| < 1,
then qk converges to 0 as k goes to infinity. It follows that the sequence qk · v = v
converges to 0 · v = 0, which implies that v = 0. Similarly, if |q| > 1, then q−k

converges to 0, so that q−k · v = v converges to 0 · v = 0, which also implies that
v = 0. If v = 0, then Stab(v) = R.

We conclude that the stabilizer of any v is either R, {1}, or {1,−1}. In the first
case, the R-orbit of v is {0}; in the second case, the orbit is homeomorphic to R; in
the third case, the orbit is homeomorphic [0,∞). V is the union of all orbits. The
intersection of any two orbits is {0}.

Terminology 2.2.6. Let C be a category and Wibble an algebraic theory. Let
X ∈ C. A Wibble object in C ↓X will be called a bundle of Wibbles over X.

We will consider the case that C = Dflg and that Wibble is a monoid, group,
abelian group, module, R-vector space, or R-cone. IfW → X is a bundle of Wibbles,
thenWx is a Wibble object inDflg. In other words, every fiber of a bundle of Wibbles
is a Wibble, which justifies the terminology. Note, that the notion of bundle of
Wibbles does not make any assumptions on local trivializations, whatsoever. So
a bundle of vector spaces over a manifold M is considerably more general than a
vector bundle over M .

Remark 2.2.7. The purpose of Terminology 2.2.6 is to unify (for the purpose of
this paper) the varied terminology found in the literature and to use a term that
is self-explanatory for a category theorist. In [Ros84, p. 1] a bundle of (abelian)
groups over an endofunctor F : C → C is called a “natural (abelian) group bundle
over F”. A bundle of vector spaces over a diffeological space X is called a “regular
vector bundle” in [Vin08], a “diffeological vector space over X” in [CW16], and a
“diffeological vector pseudo-bundle” in [Per16].

Proposition 2.2.8. The natural morphisms πX : TX → X, 0X : X → TX,
κX : R × TX → TX equip the diffeological tangent space with the structure of a
bundle of R-cones over X.

Proof. The statement is, by definition, equivalent to the commutative diagrams of
this section.
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2.2.4 Compatibility with products, coproducts, and subductions

Since y : Eucl → Dflg is full and faithful, a smooth map f : U → V of euclidean
spaces is a strong epimorphism if and only yf : yU → yV is a strong epimorphism,
which is the same thing as a subduction. For this reason we will call a strong
epimorphism f a subduction. This is the case if every point v0 ∈ V has an open
neighborhood V0 ⊂ V such that there is a smooth map g0 : V0 → U satisfying
f ◦ g0 = idV0 . In short, f is a subduction if it has local sections. In particular, every
surjective submersion is a subduction.

Proposition 2.2.9. Let α : F → G be a natural transformation of endofunctors of
Eucl. If αU : FU → GU is a subduction for all U ∈ Eucl, then (Lα)X : (LF )X →
(LG)X is a subduction for all X ∈ Dflg.

Proof. Since αU is a subduction, so is yαU . Subductions in Dflg are the same as
regular epimorphisms, so that yαU is a regular epimorphism for all U ∈ Eucl. The
left Kan extension αX = (Lα)X is given by the colimit over the category of plots
y ↓X. Since colimits preserve regular epimorphisms, αX is a regular epimorphism,
that is, a subduction.

Proposition 2.2.10. If a functor F : Eucl → Eucl preserves finite products, then
so does LF : Dflg→ Dflg.

Lemma 2.2.11. Let X1 and X2 be diffeological spaces. The functor

y ↓(X1 ×X2) −→ (y ↓X1)× (y ↓X2)(
yU

p→ X1 ×X2

)
7−→

(
yU

pr1◦p−−−→ X1, yU
pr2◦p−−−→ X2

) (2.18)

is final.

Proof. Let the functor (2.18) be denoted by D. We have to show that for every(
yW1

r1−→ X1, yW2
r2−→ X2

)
∈ (y ↓X1)× (y ↓X2)

the category D ↓(r1, r2) is connected.
Let Z be a diffeological space. Let p : yU → Z and q : yV → Z be plots. Let

U ⊂ Rn and V ⊂ Rm. By using a diffeomorphism φ : Rn → {(x1, . . . , xn) | x1 < 0}
we obtain a diffeomorphism U ∼= φ(U), where φ(U) is an open subset of the left half
space of Rm. Assume without loss of generality that n ≥ m. Then Ũ := φ(U)×Rn−m

is an open subset of the left half space of Rn. U ∼= U ×{0} ↪→ φ(U)×Rn−m = Ũ is
a retract, so that p factors through the plot

p̃ : yŨ
∼=−−→ yU × yRm pr1−−−→ yU

p−−→ Z .

Using a diffeomorphism from Rn to the right half space of Rn, we obtain a diffeo-
morphism ψ : V → Ṽ , where Ṽ is an open subset of the right half space of Rn. Let
q̃ := ψ−1 ◦ q : yṼ → Z. Since Ũ and Ṽ are disjoint we have a commutative diagram
of plots:

yŨ ∪ yṼ

yU Z yV

(p̃,q̃)

p q
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In other words, every pair of plots is connected by a cospan. (This implies that y ↓Z
is sifted.)

Let now fi : U → Wi and gi : V → Wi be smooth maps for i ∈ {1, 2}. The pairs
(f1, f2) and (g1, g2) can be viewed as elements in D ↓(r1, r2). The construction of
the cospans for Z = yWi yields the diagrams

yŨ ∪ yṼ

yU yWi yV

Xi

fi

ri

gi

for i ∈ {1, 2}. By the universal property of the product, we obtain the commutative
diagram

yŨ ∪ yṼ

yU yW1 × yW2 yV

X1 ×X2

(f1,f2)

r1×r2

(g1,g2)

This shows that (f1, f2) and (g1, g2) are connected by a cospan in D ↓(r1, r2). We
conclude that D is final.

Proof of Prop. 2.2.10. Let X1 and X2 be diffeological spaces. We have the isomor-
phisms

(LF )X1 × (LF )X2
∼=
(
colim
yU1→X1

yFU1

)
×
(
colim
yU2→X2

yFU2

)
∼= colim

yU1→X1

(
yFU1 × colim

yU2→X2

yFU2

)
∼= colim

yU1→X1

colim
yU2→X2

(
yFU1 × yFU2

)
∼= colim

yU1→X1

colim
yU2→X2

yF (U1 × U2)

∼= colim
yU→X1×X2

yFU

∼= (LF )(X1 ×X2) ,

where we have used the definition of the pointwise left Kan extension, the fact that
the product is cocontinuous in each argument since it is a left adjoint, that y and F
preserve finite products, and in the second last step Lemma 2.2.11. By induction,
it follows that LF preserves finite products.

Let F : I→ End(Eucl), i 7→ Fi be a functor. Due to the universal properties of
colimits and limits, we have for every X ∈ Dflg the natural morphism

colim
yU→X

lim
i∈I

yFiU −→ lim
i∈I

colim
yU→X

yFiU .
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Assuming that the limit limi∈I Fi exists in End(Eucl), it can be written as the natural
transformation

L lim
i
Fi −→ lim

i
LFi , (2.19)

where we have used that y preserves limits. This is not an isomorphism unless the
colimit and the limit commute.

Let G : J→ End(Eucl) be another diagram, such that limiGi exists. Any natural
transformation αi : Fi → Gi induces a commutative diagram

L limi Fi L limiGi

limi LFi limi LGi

L(limi αi)

limi Lαi

(2.20)

Proposition 2.2.12. Let F1, . . . , Fk ∈ End(Eucl) be a finite family of endofunctors.
Then we have an isomorphism

L(F1 × . . .× Fk) ∼= LF1 × . . .× LFk .

Proof. Since finite products exist in Eucl, they exist in End(Eucl). Let X ∈ Dflg.
As remarked in the proof of Lemma 2.2.11, the index category y ↓X over which
the colimits of the Kan extension are taken is sifted. Since sifted colimits commute
with finite products, the natural transformation (2.19) is an isomorphism at all
X ∈ Dflg.

It is well-known, that the left Kan extension of an arbitrary functor along the
Yoneda embedding Y : Eucl → SetEucl

op

preserves all colimits (Proposition A.0.1).
This is not true for Kan extensions along y : Eucl → Dflg. Already for the preser-
vation of coproducts we have to make additional assumptions.

Recall that a functor F : Eucl→ C is a cosheaf if F op : Euclop → Cop is a sheaf.
Explicitly, this means that for every cover {Ui → U} the diagram∐

i,j F (Ui ∩ Uj)
∐

i FUi FU (2.21)

is a coequalizer. In other words, F maps an open cover of U to an open cover of
FU .

Example 2.2.13. The following functors on Eucl are cosheaves:

(a) the tangent functor T̂ : Eucl→ Eucl;

(b) fiber products of the tangent functor such as Eucl→ Eucl, U 7→ TU ×U TU ;

(c) if F : Eucl→ C andG : Eucl→ Eucl are cosheaves, then so is their composition
FG;

(d) the de Rham functor Ω̂ : Eucl→ dgAlgop;

(d) if F : Mfldop → C is a sheaf on the big site of manifolds and open covers, then
the restriction F : Eucl ↪→Mfld→ Cop is a cosheaf.
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Proposition 2.2.14. If F : Eucl→ C is a cosheaf, then its left Kan extension along
y : Eucl→ Dflg preserves coproducts.

Proof. Let Euclcon denote the full subcategory of Eucl of connected open subsets
of euclidean spaces. Let us denote by J : Euclcon → Eucl the inclusion as full and
faithful subcategory. Since Euclcon is small and C cocomplete, the left Kan extension
of any functor G : Euclcon → C along J exists and is pointwise. Since every U ∈ Eucl
has a cover by connected open subsets, J is dense. It follows that the successive
Kan extensions first along J and then along y is the left Kan extension along the
composition yJ ,

Lany(LanJ G) ∼= LanyJ G . (2.22)

Let us consider the case G = FJ : Euclcon → C. By assumption F is a cosheaf,
which implies that

(LanJ FJ)U = colim
JV→U

FJV ∼= FU ,

for all U ∈ Eucl, that is, F ∼= LanJ FJ . From (2.22) we conclude that

Lany F ∼= LanyJ FJ .

In other words, the left Kan extension of F along y is naturally isomorphic to the
left Kan extension of F restricted to connected open subsets of Rn, n ≥ 0 along the
natural embedding Euclcon → Dflg.

Let X = ⨿i∈IXi be a coproduct of diffeological spaces Xi. The functor Dflg →
Top which maps a diffeology to the D-topology has a right adjoint, so that it pre-
serves all limits. In particular, the diffeological subspaces Xi ⊂ X are open and
closed in the D-topology. It follows that every plot yJU → X for U ∈ Euclcon,
which is a continuous map with respect to the underlying D-topologies, factors
through a single summand Xi. The conclusion is that the set of all plots from U to
X is the union of the plots to Xi for all i ∈ I,

Hom
(
yJU,⨿iXi

) ∼=∐
i

Hom
(
yJU,Xi

)
.

In other words, the functor Dflg(yJU, ) : Euclcon → Set preserves coproducts.
The pointwise left Kan extension can be expressed by the coend

(LanyJ FJ)(X) ∼=
∫ U∈Euclcon

Dflg(yJU,X)⊗ FJU ,

for all X ∈ Dflg, where the copower functor ⊗Y : Set → Dflg is the left adjoint
of Dflg(Y, ) : Dflg → Set. We see that the left Kan extension is the composition
of the functor

Dflg(yJU, ) : Dflg −→ Set

with the functor
⊗FJU : Set −→ Dflg ,

followed by the coend. We have already seen that the first functor Dflg(yJU, )
preserves coproducts. The second functor ⊗FJU preserves coproducts because it
is a left adjoint. Finally, the coend is given by a colimit, so that it, too, preserves
coproducts. We conclude that the left Kan extension LanyJ FJ ∼= Lany F preserves
coproducts.
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Corollary 2.2.15. If F : Eucl→ Eucl is a cosheaf, then LF preserves coproducts.

Proposition 2.2.16. If F : Eucl → Eucl is a cosheaf, then LF preserves subduc-
tions.

Proof. Let p : yU → (LF )Y be a plot. This means that for every point u0 ∈ U
there is a neighborhood U0, a plot q : yV → Y , and a smooth map p0 : U0 → FV ,
such that the restriction of p to yU0 ↪→ yU is equal to (LF )q ◦ yp0, as explained for
Diagram (2.17).

Let f : X → Y be a subduction. Then V has an open cover {φi : Vi → V }i∈I
such that for every i there is a qi : yVi → Y satisfying f ◦ qi = q|Vi . Since F is a
cosheaf, {FVi} is a cover of FV . This implies that there is a Vi, such that p0(u0) is
contained in FVi, so the open subset p−10 (Vi) ⊂ U0 contains u0. The situation can
be summarized by the following commutative diagram:

yp−10 (FVi) yFVi (LF )yVi (LF )X

yU0 yFV (LF )yV

yU (LF )Y

=

yFφi

(LF )qi

(LF )yφi

(LF )f
yp0 =

(LF )q

p

The outer commutative square shows that p has a local lift to (LF )X, defined on the
open neighborhood p−10 (FVi) of u0. We conclude that (LF )f is a subduction.

Warning 2.2.17. Even though every subduction is a regular epimorphism, that is,
given by a coequalizer, Proposition 2.2.16 does not imply that the left Kan extension
of a cosheaf preserves coequalizers.

Proposition 2.2.18. Let X : I → Dflg be a functor. If F : Eucl → Eucl is a
cosheaf, then the natural morphism

colim(LF )X −→ (LF ) colimX

is a subduction.

Proof. Applying LF to diagram (2.10) and using that, by Proposition 2.2.15, LF
preserves coproducts, we obtain the diagram∐

f∈Mor(I)

(LF )Xdomf

∐
i∈I

(LF )Xi colim(LF )X

(LF ) colimX

(LF )π

φ

where φ is the morphism of the proposition, which is given by the universal property
of the coequalizer. By Proposition 2.2.16 (LF )π is a subduction, so that φ is a
subduction.
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Corollary 2.2.19. The tangent functor of diffeological spaces preserves finite limits,
small colimits, and subductions.

Proof. The tangent functor of euclidean spaces preserves finite products and is a
cosheaf. The statements follow from Proposition 2.2.10, Corollary 2.2.15, and Propo-
sitions 2.2.16.

2.2.5 Representing tangent vectors by paths

Every smooth path γ : R → U in U ∈ Eucl, t 7→ γt can be mapped to its tangent
vector at t = 0, which gives rise to the map

Eucl(R, U) −→ T̂U

γ 7−→ γ̇0 :=
(
γ0,

dγt
dt

∣∣
t=0

)
.

(2.23)

Since every tangent vector in U ⊂ Rn is represented by a smooth path, this map
is surjective. Every smooth homotopy h : V × R → U of paths parametrized by
V ⊂ Rm gives naturally rise to a smooth family of tangent vectors

V −→ T̂U

v 7−→
(
h(v, t),

∂h

∂t
(v, 0)

)
.

Conversely, every smooth family V → T̂U , v 7→
(
u(v), η(v)

)
is obtained locally

from the smooth homotopy h(t, v) := u(v) + tη(v), where the domain of h has to
be restricted to an open subset of V × R such that the values h(v, t) remain in
U . The conclusion is that if we view R, U , V , and T̂U as diffeological spaces and
equip Eucl(R, U) with the functional diffeology, then (2.23) is a subduction, which
we denote by

∂̂U : Dflg(yR, yU) −→ yT̂U . (2.24)

Moreover, ∂̂U is natural in U , which means that for all smooth maps f : U → V the
diagram

Dflg(yR, yU) Dflg(yR, yV )

yT̂U yT̂V

f∗

∂̂U ∂̂V

T̂ f

commutes.

Proposition 2.2.20. The left Kan extension of (2.24) to Dflg,

∂X : Dflg(yR, X) −→ TX , (2.25)

is a natural subduction.

The difficult technical part of the proof of Proposition 2.2.20 is in the following
lemma:



2.2 The tangent functor 47

Lemma 2.2.21. Let V ∈ Eucl and X ∈ Dflg. The natural morphism

colim
yU→X

Dflg(yV, yU) −→ Dflg(yV, colim
yU→X

yU) , (2.26)

is an isomorphism.

Proof. First, we show that (2.26) is a bijection on the underlying sets. We have

Dflg(yV, colim
yU→X

yU) ∼= Dflg(yV,X)

∼= SetEucl
op

(IyV, IX)

∼= SetEucl
op

(Y V, colim
Y U→IX

Y U)

∼=
(
colim
Y U→IX

Y U
)
V

∼= colim
Y U→IX

(
(Y U)V

)
∼= colim

Y U→IX
SetEucl

op

(Y V, Y U)

∼= colim
yU→X

Dflg(yV, yU) ,

(2.27)

where we have used Proposition 2.1.15, that I is full and faithful, the Yoneda lemma,
that colimits of functors are computed pointwise, and, in the last step, that Y = Iy.

For every plot p : yU → X, we have the pushforward

Dflg(yV, yU)
p∗−→ Dflg(yV,X) ∼= Dflg(yV, colim

yU→X
yU) ,

where we have used Proposition 2.1.15. By the universal property of the colimit, the
pushforwards induce the morphism (2.26). Using the formula for colimits in terms
of a coequalizer of coproducts , we obtain the commutative diagram

∐
yU→X

Dflg(yV, yU) Dflg
(
yV,

∐
yU→X

yU
)

colim
yU→X

Dflg(yV, yU) Dflg
(
yV, colim

yU→X
yU
)

ψ

χ (2.28)

where ψ is given by the universal property of the coproduct. The left vertical arrow
is a coequalizer, so a fortiori a strong epimorphism.

Let p : yW → Dflg(yV,X) be a plot. By definition of the functional diffeology,
this is the case if and only if the associated map p̃ : yW × yV → X, (w, v) 7→(
p(w))(v) is a plot. Since y preserves products, we have the diagram

y(W × V )

yW × yV X

p̃
id

p̃
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By the universal property of the inner hom, this gives rise to the “tautological” lift
of p

Dflg
(
yV, y(W × V )

)
yW Dflg(yV,X) ,

p∗
q

p

where
q : yW −→ Dflg

(
yV, y(W × yV )

)
w 7−→

(
v 7→ (w, v)

)
.

We thus obtain the commutative diagram

Dflg
(
yV, y(W × V )

) ∐
yU→X

Dflg(yV, yU)

yW Dflg(yV, colim
yU→X

yU)

χ◦ψq

p

p̂

This shows that every plot of Dflg(yV,X) lifts to a plot p̂, which implies that χ ◦ ψ
is a strong epimorphism. It follows from the commutativity of diagram (2.28) and
Proposition 2.1.23 (ii) that φ is a strong epimorphism.

The forgetful functorDflg(∗, ) : Dflg→ Set preserves colimits (Proposition 2.1.12),
so that we obtain the natural isomorphisms

Dflg
(
∗, colim

yU→X
Dflg(yV, yU)

) ∼= colim
yU→X

Dflg(yV, yU)

∼= Dflg(yV, colim
yU→X

yU)

∼= Dflg(yV,X)

∼= Dflg
(
∗,Dflg(yV,X)

)
,

where in the second step we have used (2.27). This shows that the morphism (2.26)
is a bijection on the underlying sets. In particular, it is a monomorphism.

By Proposition 2.1.23, every strong epimorphism that is a monomorphism is an
isomorphism. We conclude that (2.26) is an isomorphism.

Warning 2.2.22. It is tempting to try to prove Lemma 2.2.21 by simply invoking
the enriched Yoneda lemma. However, the colimit of a diagram in Dflg is generally
different from its colimit in the category of presheaves, so that it cannot be computed
pointwise. This is why we need to use isomorphism (2.27). For the same reason I
believe that the lemma does not hold in general if yV is replaced with a non-
representable diffeological space.

Proof of Proposition 2.2.20. The left Kan extension along y of the functor Eucl →
Dflg, U 7→ Dflg(yR, yU) is given pointwise by(

LanyDflg(yR, )
)
(X) = colim

yU→X
Dflg(yV, yU) .
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Figure 2.1: Two intersecting planes with the subspace diffeology of R3. The red
paths are not tangent to each other on the same plot. They represent the same
tangent vector because each path is tangent to the blue path on a different plot.

Lemma (2.2.21) for V = R shows that the domain of the left Kan extension is
isomorphic to Dflg(yR, X). Since (2.24) is a strong epimorphism and since strong
epimorphisms are preserved by the left Kan extension, it follows that ∂X is a strong
epimorphism.

Proposition (2.2.20) can be interpreted as follows. Every tangent vector is rep-
resented by a path. Every smooth family of tangent vectors is represented by a
smooth family of paths. The naturality of ∂X means that the pushforward of paths
along a morphism f : X → Y descends to the tangent map, that is, the diagram

Dflg(yR, X) Dflg(yR, Y )

TX TY

f∗

∂X ∂Y

Tf

commutes. In this sense, the left Kan extension of the tangent functor implements a
version of the kinematic definition of tangent vectors as equivalence classes of smooth
paths. Note, however, that two paths that represent the same tangent vector in TX
need not be tangent to each other on the same plot, as Figure 2.1 illustrates.

The natural morphisms πX : TX → X, 0X : X → TX, and κX : R×TX → TX,
which equip TX with the structure of a bundle of R-cones over X, are induced by
morphisms on the space of paths as follows. The evaluation of paths at t = 0,

evX : Dflg(R, X) −→ X

γ 7−→ γ(0) ,
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descends to the bundle projection πX . That is, the diagram

Dflg(yR, X)

TX X

∂X
evX

πX

commutes. The inclusion of X as constant paths,

cX : X −→ Dflg(yR, X)

x 7−→ (t 7→ x) ,

descends to the zero section. That is, the diagram

Dflg(yR, X)

X TX

∂X
cX

0X

commutes. Finally, the linear rescaling of the time parameter of paths,

σX : R×Dflg(R, X) −→ Dflg(R, X)

(α, γ) 7−→ (t 7→ γαt) ,
(2.29)

induces the R-multiplication. That is, the diagram

R×Dflg(R, X) Dflg(R, X)

R× TX TX

σX

idR×∂X ∂X

κX

(2.30)

commutes.

2.3 The diffeological space of fields

2.3.1 The tangent functor of mapping spaces

The natural bijection

Dflg
(
Dflg(X, Y ),Dflg(X, Y )

) ∼=−→ Dflg
(
Dflg(X, Y )×X, Y )

maps the identity on Dflg(X, Y ) to a morphism

evX,Y : Dflg(X, Y )×X −→ Y ,

which can be viewed as the evaluation of the morphisms in Dflg(X, Y ) at the points
of X. The domain of its tangent morphism T evX,Y is

T
(
Dflg(X, Y )×X

) ∼= T Dflg(X, Y )× TX ,
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where we use that the tangent functor preserves finite products (Corollary 2.2.19).
By precomposing T evX,Y with the zero section of TX → X, we obtain a morphism

T Dflg(X, Y )×X id×0X−−−−−→ T Dflg(X, Y )× TX
T evX,Y−−−−−→ TY .

Using the adjunction between products and mapping spaces, this morphism can be
viewed as morphism

T Dflg(X, Y ) −→ Dflg(X,TY ) , (2.31)

which is natural in X and Y .
Due to the naturality of the map from paths to tangent vectors, we have the

commutative diagram

Dflg
(
yR,Dflg(X, Y )×X

)
Dflg(yR, Y )

T Dflg(X, Y )× TX TY

(evX,Y )∗

∂Dflg(X,Y )×X ∂Y

T evX,Y

The map cX : X → Dflg(yR, X) to constant paths descends to the zero section 0X ,
so that we have the commutative diagram

Dflg
(
yR,Dflg(X, Y )

)
×X Dflg

(
yR,Dflg(X, Y )×X

)
T Dflg(X, Y )×X T Dflg(X, Y )× TX

id×cX

∂Dflg(X,Y )×idX ∂Dflg(X,Y )×X

id×0X

Juxtaposing the last two commutative squares, we obtain the commutative square

Dflg
(
yR,Dflg(X, Y )

)
×X Dflg(yR, Y )

T Dflg(X, Y )×X TY

∂Dflg(X,Y )×idX ∂Y

By the adjunction between products and mapping spaces, this diagram is mapped
to the following commutative diagram:

Dflg
(
yR,Dflg(X, Y )

)
Dflg

(
X,Dflg(yR, Y )

)
T Dflg(X, Y ) Dflg(X,TY ) ,

∂Dflg(X,Y )

∼=

(∂Y )∗
(2.32)

where the bottom horizontal arrow is the morphism (2.31).

Definition 2.3.1. Let f : Y → X be a morphism of diffeological spaces. The
diffeological space

Γ(X, Y ) := ∗ ×idX ,f∗
Dflg(X,X) Dflg(X, Y ) . (2.33)

will be called the space of sections of f .
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Since ∗ ↪→ Dflg(X,X), ∗ 7→ idX is a strong monomorphism and since strong
monomorphisms are stable under pullback, the map Γ(X, Y ) → Dflg(X, Y ) is a
strong monomorphism. In other words, the space of sections is equipped with the
subspace diffeology of the mapping space, which means that a map of sets p : U →
Γ(X, Y ) is a plot if and only if the map p̃ : U×X → Y , p̃(u, x) = p(u)(x) is smooth.

Using the natural morphism (2.31), we obtain a commutative diagram

∗ T Dflg(X,X) T Dflg(X, Y )

∗ Dflg(X,TX) Dflg(X,TY )

0idX T (f∗)

0X (Tf)∗

which induces a morphism of the limits of each row,

∗ ×0idX ,T (f∗)

T Dflg(X,X) T Dflg(X, Y ) −→ ∗ ×0X ,(Tf)∗
Dflg(X,TX) Dflg(X,TY ) . (2.34)

By the universal property of the pullback, we have a natural morphism

TΓ(X, Y ) −→ ∗ ×T Dflg(X,X) T Dflg(X, Y ) . (2.35)

Using that the functor Dflg(X, ) preserves limits, we obtain the natural isomor-
phisms

∗ ×0X ,(Tf)∗
Dflg(X,TX) Dflg(X,TY )

∼= ∗ ×idX ,id
Dflg(X,X) Dflg(X,X)×(0X)∗,(Tf)∗

Dflg(X,TX) Dflg(X,TY )

∼= ∗ ×Dflg(X,X) Dflg
(
X,X ×0X ,T f

TX TY
)

∼= Γ(X, V Y ) ,

(2.36)

where

V Y := X ×0X ,T f
TX TY (2.37)

is the space of tangent vectors in the kernel of Tf : TX → TY , that is, the vertical
tangent space. Note that we have to regard V Y as bundle over X rather than Y .
Composing (2.34), (2.35), and (2.36), we obtain a natural morphism

TΓ(X, Y ) −→ Γ(X, V Y ) . (2.38)

The restriction of Diagram (2.32) to the space of sections yields the commutative
diagram

Dflg
(
yR,Γ(X, Y )

)
TΓ(X, Y ) Γ(X, V Y )

∂Γ(X,Y )
(2.39)

Question 2.3.2. Under what conditions is (2.31) or (2.38) an isomorphism?



2.3 The diffeological space of fields 53

φ0(M)

φ̇0(m)

m

φt(M)

F

M

Figure 2.2: A path of sections φt of a fiber bundle F → M . The point φt(m) ∈ F
moves vertically in the fiber above m. The velocity φ̇0(m) at t = 0 for all m defines
a vector field supported at φ0(M), which is depicted in red.

2.3.2 The tangent functor of the space of fields

Definition 2.3.3. Let F → M be the smooth fiber bundle of a field theory. The
diffeological space of sections F = Γ(M,F ) is called the space of fields.

The space of fields is equipped with the subspace diffeology of the functional
diffeology. This means that a map φ : U → F, u 7→ φu defined on the open subset
U ⊂ Rn is a plot if and only if

U ×M −→ F, (u,m) 7−→ φu(m)

is a smooth map of finite-dimensional manifolds.

The morphism T Hom(M,F ) → Hom(M,TF ) maps the tangent vector repre-
sented by the path t 7→ φt to the map in Γ(M,TF ) that sends m to the tangent
vector represented by the path t 7→ φt(m). If φt is a section of the bundle projection
ρ : F →M , then ρ

(
φt(m)

)
= m. It follows that

Tρ
(
φ̇0(m)

)
=

d

dt
ρ
(
φt(m)

)∣∣∣
t=0

=
d

dt
m
∣∣∣
t=0

= 0m ,

which shows that the tangent vector φ̇0(m) lies in the vertical tangent bundle of
F →M . This is depicted in Figure 2.2.
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We have the following commutative diagram of manifolds:

M

M ×F V F V F

M F

M

φ̇0

id πF

id

φ0

(2.40)

This shows that φ̇0 is a section of the bundle V F → M , which covers the section
φ0 = πF ◦ φ̇0. The map

(πF )∗ : Γ(M,V F ) −→ Γ(M,F ) = F

is a subduction since the zero section defines a smooth section of (πF )∗. The (πF )∗-
fiber over φ ∈ F is given by

Γ(M,V F )φ = Γ∞(M,φ∗V F ) ,

where φ∗V F =M ×φ,πFF V F is the pullback bundle.

Theorem 2.3.4. Let F →M be a smooth fiber bundle and F = Γ(M,F ) the space
of fields. Then (2.38) is an isomorphism, so that the diffeological tangent bundle of
the space of fields is given by

TF ∼= Γ(M,V F ) .

Proof. Diagram (2.32) for ρ : F →M yields the commutative diagram

Dflg(yR,F)

TF Γ(M,V F )

∂F
µ

ν

(2.41)

The structure of the proof is the following. In the first part, we will show that µ
is a subduction. This implies that ν is a subduction. In the second part, which is
the hardest, we will show that ν is injective. Since every injective subduction is an
isomorphism, we conclude that ν is an isomorphism.

Proof that µ is a subduction A section η : M → V F is a vertical vector field
supported on S = (πF ◦ η)(M) ⊂ F . Since S is an embedded submanifold, we can
extend η to a vertical vector field η̄ on F , supported on a tubular neighborhood of
S, so that η is complete. Let Φ : R × F → F be the flow integrating η̄. Then the
smooth path φ : R→ F defined by φt(m) := Φ(t, (πF ◦η)(m)) satisfies φ̇0 = η. This
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shows that every section in Γ(M,V F ) is the time derivative at 0 of a path in F, so
that the map µ is surjective.

Let now p : yU → Γ(M,V F ) be a plot, which we can view as smooth homotopy
p̃ : U ×M → V F . The smooth map η : U ×M → U × V F , η(u,m) :=

(
u, p̃(u,m)

)
is a section of the vertical tangent bundle of the fiber bundle idU × ρ : U × F →
U × M . By the same argument as in the last paragraph, we can find a smooth
path φ : R → Γ(U × M,U × F ), such that φ̇0 = η. The path φ is of the form
φ̃t(u,m) = (u, q̃(t, u,m)) for a smooth map q̃ : R×U ×M → F , which we can view
as a plot q : yU 7→ Dflg(yR,F). By construction, we have p̃(u,m) = ∂q̃

∂t
(0, u,m).

In terms of the plots p and q, this means that p = µ ◦ q. We conclude that µ is a
subduction.

Proof that ν is injective Let the tangent vector η ∈ TF be represented by the
path t 7→ φt ∈ F. The section φ0 ∈ F is the basepoint of η. Let N ⊂ F be a tubular
neighborhood of the embedded submanifold S := φ0(M) ⊂ F . In the first step, we
will show that η is represented by a path t 7→ ψt ∈ F contained in N .

We can view φ as a smooth map φ̃ : R×M → F , (t,m) 7→ φt(m). In particular,
φ̃({0} × M) = φ0(M) = S. Let Ui ⊂ M be an open set with compact closure,
for example an open ball. Then we can find an εi > 0 sufficiently small, such that
φ̃
(
(−εi, εi) × Ui

)
⊂ N . Let αi : R → R be a smooth function with the following

properties:

(i) |αi(t)| < εi for all t.

(ii) αi(t) = t for |t| ≤ 1
2
εi.

From these properties it follows that φ
(
αi(R) × Ui

)
⊂ N and that φ(αi(t), u) =

φ(t, u) for |t| < εi, u ∈ Ui. Using a standard partition of unity argument, we obtain
smooth functions ε :M → R+ and α : R×M → R, such that

(i) |α(t,m)| < ε(m)

(ii) α(t,m) = t for |t| ≤ 1
2
ε(m)

Let
ψ̃ := φ̃ ◦ (α, idM) : R×M −→ F

which is a homotopy of sections of F →M . Properties (i) and (ii) of ε and α imply

(i’) ψ̃(t,m) ∈ S for all t and m.

(ii’) ψ̃(t,m) = φ̃(t,m) for |t| ≤ ε(m)
2

.

The geometric interpretation is that α is a function that squeezes φ̃ into N without
changing it on the subset

D :=
{
(t,m) ∈ R×M | |t| < 1

2
ε(m)

}
,

which is a tubular neighborhood of {0} ×M ⊂ R×M . Next, we will show that ψ
represents the same tangent vector as φ.
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Since α is smooth, the function

α′(t,m) :=
α(t,m)− α(0,m)

t
=

1

t
α(t,m)

extends smoothly to t = 0, where it has the value α′(0,m) = ( ∂
∂t
α)(0,m) = 1. (This

is often referred to as Hadamard’s lemma.) Since α′ is smooth, the function

α′′(t,m) :=
α′(t,m)− α′(0,m)

t
=

1

t2
α(t,m)− 1

t

extends smoothly to t = 0. Consider the smooth map β : R2 ×M → R defined by

β(s, t,m) := t− sα′′(t,m) .

It satisfies

β(0, t,m) = t

β(t2, t,m) = α(t, 0) .

Consider the smooth map χ̃ : R2 ×M → F given by

χ̃(s, t,m) := φ̃
(
β(s, t,m),m) .

It satisfies, ρ
(
χ̃(s, t,m)

)
= m so that it is a smooth homotopy (s, t) 7→ χ(s,t) ∈ F,

χ(s,t)(m) := χ̃(s, t,m) of sections of F →M . Moreover, χ̃(0, t,m) = φ̃(t,m) and

χ̃(0, t,m) = φ̃(t,m)

χ̃(t2, t,m) = φ̃
(
t, α(t,m)

)
ψ̃(t,m) .

This means that φt = χ(0,t) and ψt = χ(t2,t), so that we have the commutative
diagram of plots

R R2 R

F

φ

f

χ
ψ

g

where f(t) := (0, t) and g(t) := (t2, t). Since Tf(0, 1) = Tg(0, 1), we see that the
paths φt and ψt represent the same tangent vector in F.

Let now φ′ : R → F be a smooth path such that φ̇′0 = ψ̇0, that is µ(φ′) =
µ(φ). We must show that φ and φ′ represent the same tangent vector on F in the
quotient (2.16). The embedded submanifold S := φ0(M) = φ′0(M) has a tubular
neighborhood N ⊂ F , that is, N is an open subset such that the inclusion S ↪→ N
extends to a diffeomorphism from the normal bundle of S to N . Since the normal
bundle of φ0(M) is isomorphic to φ∗0V F , we have a diffeomorphism

κ : φ∗0V F
∼=−→ N (2.42)

which is an isomorphism of fiber bundles over S. This induces an isomorphism of
spaces of sections

κ∗ : Γ(S, φ
∗
0V F )

∼=−→ Γ(S,N) . (2.43)
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As we have shown, there are paths ψ, ψ′ in Dflg(yR,F) that represent the same
tangent vectors as φ, φ′ and are contained in N . Since they represent the same
tangent vectors, we have ψ̇0 = φ̇0 and φ̇′0 = ψ̇′0. Since by assumption φ̇0 = φ̇′0
it follows that ψ̇0 = ψ̇′0. Since ψ and ψ′ are contained in S, they are paths in
the subspace Γ(S,N) ⊂ Γ(M,F ), so that they are mapped by the inverse of the
isomorphism (2.43) to the paths a := κ−1 ◦ φ and a′ := κ−1 in the space of sections
of the vector bundle A = φ∗0V F → φ0(M) = S. Moreover, since (2.42) is an
isomorphism, we have ȧ0 = ȧ′0.

In local fiber coordinates (x1, . . . , xn, u1, . . . , uk) over a neighborhood V ⊂ M ,
the sections are given by the coordinate functions, which we denote by

ãα(t, x) = aαt (x
1, . . . , xn)

ã′α(t, x) = a′αt (x
1, . . . , xn) .

Since ȧ0 = ȧ′0, the difference ã′α − ãα is a function that has vanishing value and
vanishing partial derivative with respect to t at t = 0. It follows from Hadamard’s
lemma that there is a smooth function hα = hα(x, t) on the local coordinate chart,
such that

ã′α(t, x)− ãα(t, x) = t2hα(t, x) .

Now we define smooth functions p̃α : R2 × V → R by

p̃α(s, t, x) := ãα(t, x) + s2hα(t, x) .

It is easy to check that
ãα = p̃α ◦ f , ã′α = p̃α ◦ g ,

where f and g are given as above.
The maps p̃α for 1 ≤ α ≤ k define a smooth homotopy of local sections p̃V :

R2 → Γ(V,A|V ). Since pV depends linearly on h we can use a standard partition
of unity argument to sum the local homotopies hVi of a cover Vi ⊂ S which yields
a smooth homotopy of global sections p : R2 → Γ(S,A) that makes the following
diagram commute:

R R2 R

Γ(S,A)

f

a
p

g

a′

By composing this diagram with the isomorphism (2.43), we obtain:

R R2 R

Γ(S,N)

Γ(M,F )

f

ψ

κ◦p

g

ψ′

This shows that the paths ψ and ψ′ represent the same tangent vector in TF, which
implies that φ and φ′ represent the same tangent vector. In the notation of dia-
gram (2.40), we have shown the following. Assume that φ, φ′ ∈ Dflg(yR,F) satisfy
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µ(φ) = µ(φ′), then ∂F(φ) = ∂F(φ
′). Since µ = ν ◦ ∂F this means that ν is injective

on the image of ∂F. Since ∂F is surjective, we conclude that ν is injective. Since ν
is a subduction, as we have already proved, it follows from Proposition 2.1.23 (iv)
that it is an isomorphism. This concludes the proof.

Remark 2.3.5. The proof of Theorem 2.3.4 uses in an essential way a number of
properties of smooth manifolds: the extension of vector fields, the local triviality of
the tangent bundle, the existence of a partition of unity, the integration of vector
fields to flows, and the existence of tubular neighborhoods. For this reason, there is
no obvious adaptation of the proof to more general diffeological spaces.

Corollary 2.3.6. Let M and N be smooth manifolds viewed as diffeological spaces
with the smooth diffeology. Then

T Dflg(M,N) ∼= Dflg(M,TN) .

Proof. The proof follows from Theorem 2.3.4 for the trivial bundle F :=M ×N →
M .

Corollary 2.3.7. The fiber of the diffeological tangent bundle of TF → F over
φ ∈ F is

TφF ∼= Γ(M,φ∗V F ) . (2.44)

Terminology 2.3.8. In the language of variational calculus, an element of TφF is
called an infinitesimal variation of φ.

Corollary 2.3.9. Let A→M be a smooth vector bundle and A = Γ(M,A) its space
of sections. Then we have an isomorphism

TA ∼= A×A

Proof. The smooth map of fiber bundles A×M A→ V A that maps (am, bm) to the
vertical tangent vector represented by the path t 7→ am + tbm is an isomorphism. It
follows that Γ(M,V A) ∼= Γ(M,A×M A) ∼= A×A.

Remark 2.3.10. The isomorphism of Corollary 2.3.9 is a morphism of bundles,
where pr1 : A×A→ A is the trivial bundle. This implies that T0A ∼= A. In other
words, the tangent fibers of A can be identified with A. Diffeological vector spaces
with this property are called tangent-stable in [Blo].

2.3.3 Elastic diffeological spaces

A considerable part of the infinitesimal differential geometric computations on a
smooth manifold M can be carried out in its Cartan calculus, which consists of
the tangent bundle TM → M , the Lie bracket of vector fields, the graded algebra
of differential forms Ω(M), together with the de Rham differential d, the inner
derivative ιv and the Lie derivative Lv for every vector field v, which satisfy the
relations

[d, d] = 0 , [ιv, ιw] = 0 , [ιv, d] = Lv ,

[Lv, ιw] = ι[v,w] , [Lv, d] = 0 , [Lv,Lw] = L[v,w] ,
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where the bracket is the graded commutator of graded derivations of Ω(M). For
example, local definitions and calculations of symplectic geometry can typically be
worked out in the Cartan calculus, such as hamiltonian vector fields, Poisson brack-
ets, hamiltonian actions, Dirac structures, generalized complex geometry, contact
structures, the L∞-algebra of a multisymplectic structure, homotopy momentum
maps, infinitesimal models for equivariant cohomology, etc. In Lagrangian Field
Theory, the derivation of the Euler-Lagrange equations, local symmetries, Noether’s
theorems, the theory of Jacobi fields, etc. take place in the Cartan calculus of the
infinite jet bundle, also known as the variational bicomplex [DF99].

Question 2.3.11. What are the conditions a diffeological space must satisfy so that
it is equipped with a natural Cartan calculus?

Of course, there are always the tautological conditions which promote the desired
outcome to axioms, in our case the existence of a Cartan calculus. The task is to
identify a set of conditions that is minimal or at least so small that it can be verified
in a wide range of cases.

We have already defined the de Rham complex Ω(X) and the tangent functor
TX of diffeological spaces by pointwise left Kan extension. How do we define the
Lie bracket of vector fields on a diffeological space? The first guess is to start from
the Lie algebras X(U) = Γ(U, TU) of vector fields on all plots U → X. However,
U 7→ X(U) is not a functor, so that the left Kan extension cannot be applied. We
could map the vector fields to the space of derivations of C∞(X) = Ω0(X), which is
equipped with the commutator bracket. However, this map is generally not injective,
and even if it is, its image may not be closed under the bracket. Worse, the map
X 7→ Der(C∞(X)) is still not a functor, so that this does not solve the problem
of naturality. The conclusion is that the spaces of vector fields on plots are not a
good starting point for the construction of a natural Cartan calculus on diffeological
spaces.

Fortunately, the situation has been analyzed carefully by Rosický who has iden-
tified the natural structure of the tangent functor that is needed to define the Lie
bracket of vector fields [Ros84]. He defines an abstract tangent structure on a cate-
gory C to be an endofunctor T : C→ C together with the natural transformations of
the bundle projection πX : TX → X, zero section 0X : X → TX, fiberwise addition
+X : TX ×X TX → TX, exchange of order of differentiation τX : T 2X → T 2X,
and inclusion of the tangent fibers into the vertical tangent space λX : TX → T 2X,
which have to satisfy a rather long list of axioms. It is instructive to see how all
these structures come together to define the Lie bracket of vector fields, avoiding
any reference to the commutator bracket of derivations of some structure ring.

The main advantage of Rosický’s approach is that all the structure is given by
functors and natural transformations, to which we can apply the left Kan extension.
However, this does not yield an abstract tangent structure on all diffeological spaces.
The main issue is that the pointwise left Kan extension, which is given by a colimit,
does not preserve limits, in particular the pullback on which the fiberwise addition
of tangent vectors is defined. More precisely, the natural morphism

colim
yU→X

y(T̂U ×U T̂U) −→ TX ×X TX , (2.45)
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is not an isomorphism for all diffeological spaces X. In fact, this map is generally
neither surjective nor injective, as the following two examples show.

Example 2.3.12 (Axis cross of the plane). Consider the subset {(x, y) ∈ R2 | xy =
0} ⊂ R2 with the subspace diffeology. The two tangent vectors at the orgin in
the direction of the x-axis and the y-axis cannot be represented on the same plot
(Figure 2.3). It follows that (2.45) is not surjective.

Example 2.3.13 (Folded line). Consider the diffeological quotient space of the
action Z2 × R → R, (k, x) 7→ kx, where Z2 = {1,−1}. The quotient map R →
R/Z2 is a plot. The tangent vectors (0, 1) and (0,−1) on its domain represent the
same tangent vector on R/Z2. This implies that the pairs ζ =

(
(0, 1), (0, 1)

)
and

η =
(
(0, 1), (0,−1)

)
in TR ×R TR represent the same pair of tangent vectors in

T (R/Z2) ×R/Z2 T (R/Z2). Since the tangent morphism of every morphism of plots
preserves the sum of a pair of tangent vectors at a point and since the sum of η is zero
but that of ζ is not, the two pairs cannot be equivalent in colimU→R/Z2 TU ×U TU .
We conclude that (2.45) is not injective.

The axiom of elasticity Only if (2.45) is an isomorphism, the left Kan extension
of the addition +̂U of tangent vectors on plots is a morphism +X : TX×XTX → TX
that can be viewed as a fiberwise addition of tangent vectors on the diffeological
space X. Therefore, requiring (2.45) to be an isomorphism is the first condition we
have to impose for a diffeological space to have a natural Cartan calculus.

A k-form in Ω(X) is a family of k-forms on all plots U → X that are compatible
with the pullbacks along morphisms of plots. A vector field, however, is not repre-
sented by a family of vector fields on the plots. For this reason, there is no natural
operation of inner derivative on Ω(X). For the inner derivative, we have to define a
k-form as a fiberwise multilinear and antisymmetric morphism

α : TX ×X . . .×X TX︸ ︷︷ ︸
=:TkX

−→ R .

(We avoid defining a tensor product, which would entail the usual technical issues
of completion when the fibers are infinite-dimensional.) The notation TkX for the
k-fold fiber product is standard in the literature on abstract tangent structures. The
inner derivative of α with respect to a vector field v : X → TX is then given by
precomposition

ιvα : Tk−1X
∼=−−→ X ×X Tk−1X

v×X id−−−−−→ TkX
α−−→ R .

If we define forms as maps TkX → R, how can we define the differential? The
differential of a function f : X → R is given by the tangent map,

df : TX
Tf−−−→ TR

∼=−−→ R× R pr2−−−→ R .

However, the functions and exact 1-forms do not generate the ring of forms, so that
this construction cannot be extended to higher forms.

We are now in the following dilemma. Either we define differential forms as
families of forms on the plots, in which case we have a differential but no inner
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derivative. Or we define them as fiberwise multilinear and antisymmetric morphisms
TkX → R, in which case we have an inner derivative, but no differential. The way
out is to require that the two notions of differential forms coincide.

We have already imposed the condition that (2.45) is an isomorphism, which
induces an isomorphism

Dflg(TX ×X TX,R)
∼=−−→ lim

yU→X
Eucl(T̂U ×U T̂U,R) . (2.46)

It is easy to see that this isomorphism is equivariant with respect to the exchange of
the two factors for the fiber product. Moreover, the maps are fiberwise multilinear
on TkX if and only if they are on all TkU . This shows that the isomorphism (2.46)
induces an isomorphism from fiberwise multilinear and antisymmetric morphisms
on TX×X TX to Ω2(X). Since we need such an isomorphism for forms of arbitrary
degree k, we have to impose the following axiom:

Axiom (E1). The natural morphisms

θk,X : (LT̂k)X −→ TkX ,

are isomorphisms for all k > 1.

This axiom has the following geometric interpretation. Every tangent vector
vx ∈ TxX is represented by a path. One can picture this by stretching out x in
the direction of vx to a smooth path γ : (−ε, ε) → X of short but non-zero length
through γ(0) = x, such that the coordinate tangent vector ∂

∂t
at the origin of the

interval is mapped by T0γ to vx. In this sense, every point of a diffeological space
has some elasticity in a single infinitesimal direction.

However, we generally cannot simultaneously stretch out x in the directions of
several tangent vectors v1x, . . . , v

k
x ∈ TXx. That is, we cannot always find a plot

p : U → X with p(0) = x such that (T0p)
∂
∂ti

= vix, where (t1, . . . , tk) are the
canonical coordinates of U ⊂ Rk. And even if we can find such a plot, it may
happen that the tangent map Tp is not injective at 0, so that we cannot identify
the tangent vectors on X with the coordinate vectors on U . This identification is
possible at every point x ∈ X if and only if the morphism θk,X is a bijection. If in
addition we want this condition to be compatible with the smooth structure, then
we have to make the stronger assumption that θk,X is an isomorphism of diffeological
spaces. In this sense, Axiom (E1) captures the geometric idea of the “elasticity” of
a diffeological space in which any finite set of tangent directions can be streched out
to a smooth “membrane” given by the image of a plot.

Example 2.3.14 (Pasta diffeologies). We can equip a smooth manifold M with an
alternative diffeology by defining the plots be all smooth maps p : U → M such
that the rank of Tp : TU → TM is everywhere less than or equal to r. Since (i)
the precomposition of p with a smooth function f does not increase the rank, (ii)
the rank is a local property, and (iii) the rank of constant maps is zero, this defines
a diffeology, which we call the rank-r-restricted diffeology. The rank-r-restricted
diffeology is r-dimensional in the sense of Definition 1.12 in [Mag13].

For r = 0 we obtain the discrete diffeology. If r = 1, then every plot factors
through R, so that we obtain the Spaghetti diffeology [IZ13, Sec. 1.10, footnote
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Figure 2.3: Diffeological subspaces of R2 with non-elastic points marked in red, at
which two tangent directions cannot be represented on the same plot.

1]. The case r = 2 might then be called the Fettuccine diffeology. It was
suggested by the participants of the AMS-EMS-SMF meeting 2022 in Grenoble that
the case r = 3 should be called the Gnocchi diffeology. For the rank-r-restricted
diffeology the morphism θk,M of Axiom (E1) is an isomorphism for all k ≤ r but not
for r < k < dimM .

The additional axioms So far we have the Axiom (E1) that ensures that we
have a fiberwise addtion on TX and an inner derivative on differential forms. For
the definition of the Lie bracket we need more structure. In particular, we need a
natural morphism τX : T 2X → T 2X that exchanges the order of differentiation when
we apply the tangent functor twice. On a euclidean space U ⊂ Rn, every tangent
vector is represented by a path R→ U on some plot, so that a tangent vector on the
manifold of tangent vectors is represented by a smooth path of smooth paths, which
is the same as a smooth map R2 → U . Exchanging the order of differentiation is
achieved by exchanging the parameters,

τ1↔2 : R2 −→ R2

(t1, t2) 7−→ (t2, t1) ,

which descends by the commutative diagram

C∞(R2, U) C∞(R2, U)

T̂ 2U T̂ 2U

τ∗1↔2

τ̂U

(2.47)

to an endomorphism of T̂ 2U .
When we extend τ̂U to diffeological spaces, the problem arises that the left Kan

extension does not preserve the product of endofunctors, that is, the natural mor-
phism

θ2X : (LT̂ 2)X −→ T 2X

is generally not an isomorphism. We could impose the condition that θ2X is an
isomorphism, but this would be unnecessarily strong. It suffices to require the left
Kan extension of τU to descend to a morphism τX : T 2X → T 2X. It can be shown
that θ2X is a subduction for all X, so that such a τX is unique. This condition can
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be expressed more intuitively in terms of the smooth families in the same way as
for euclidean spaces. We can show that we can represent elements in T 2X by plots
R2 → X. More precisely, we have a subduction

Dflg(R2, X) −→ T 2X .

The second axiom can now be expressed in a way that is completely analogous to
diagram (2.47).

Axiom (E2). There is a natural morphism τX : T 2X → T 2X, such that the
diagram

Dflg(R2, X) Dflg(R2, X)

T 2X T 2X

τ∗1↔2

τX

commutes.

Next, consider the natural morphism λX : TX → T 2X that maps v ∈ TX to
the vertical tangent vector on TX represented by the path t 7→ tv. On a smooth
manifold, this morphism induces an isomorphism between every tangent space and
the tangent space of the tangent space. For diffeological vector spaces this can fail,
as the following example shows.

Example 2.3.15. Consider Rn equipped with k-times differentiable maps as plots.
This is a diffeological vector space that we denote by Rn

Ck . Its tangent diffeological
space is given for k > 0 by

TRn
Ck
∼= Rn

Ck × Rn
Ck−1 ,

which shows that the vector space and its tangent fiber are not isomorphic. Assume
that k > 1, so that we can apply the tangent functor twice. The vertical lift,

λRn
Ck

: Rn
Ck × Rn

Ck−1 −→ Rn
Ck × Rn

Ck−1 × Rn
Ck−1 × Rn

Ck−2

(x, v) 7−→ (x, 0, 0, v) ,

is not a subduction.

The definition of the Lie bracket in terms of the tangent structure yields a map
from X to the vertical subbundle of T 2X restricted to the zero section of TX.
We have to be able to identify this bundle with TX for the bracket to be again a
vector field. This condition is not specific to diffeological spaces. A vector field on
a Ck-manifold is a Ck-map. The commutator of two such vector fields is a Ck−1-
map which is, therefore, not a vector field on the Ck-manifold. To exclude such
phenomena we have to impose the following axiom:

Axiom (E3). The vertical lift λX : TX → T 2X is an induction.
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Figure 2.4: Elastic diffeological subspaces of R2. The tangent spaces are 0 at the
marked points, R at points on the black lines, and R2 at gray points in the interior.

There are two more axioms. For smooth manifolds the tangent functor commutes
with pullbacks over submersions. This follows from the local standard form of
submersions, which is proved using the implicit function theorem. Such a genuinely
analytic result cannot hold for all diffeological spaces, which is why we need to
impose the following axiom:

Axiom (E4). The tangent functor commutes with fiber products of the tangent
bundle, TTkX ∼= TkTX.

Finally, we want the diffeological spaces that satisfy our axioms to form a cat-
egory. This requires the collection of diffeological spaces that satisfy the axioms to
be closed under the functors Tk, which leads to the following axiom:

Axiom (E5). For every finite set of positive integers k1, . . . , kn the diffeological
space X ′ := Tk1 · · ·TknX satisfies axioms (E1) through (E4).

Definition 2.3.16. A diffeological space that satisfies Axioms (E1)-(E5) will be
called elastic.

Theorem 2.3.17. On elastic diffeological spaces there is a natural Cartan calculus.

Remark 2.3.18. If we drop Axiom (E5), then we still have a natural Cartan calculus
on X. We call a diffeological space that satisfies Axioms (E1)-(E4) weakly elastic.
The category of weakly elastic spaces is not closed under the functors Tk.

Theorem 2.3.19. The diffeological space of sections Γ(M,F ) of a smooth fiber
bundle F →M is elastic.

Exercises

Exercise 2.1 (Concrete presheaves). Let X : Euclop → Set be a concrete presheaf.
(The elements in the image of the injection X(U) ↪→ Set(|U |, X(∗)) will be called
plots.) Show that the following are equivalent:

(i) X is a sheaf.

(ii) A map p : |U | → X(∗) is a plot if for every cover {Ui → U} all restrictions
pi : |Ui| → X(∗) are plots.
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Exercise 2.2 (Diffeologies on the half plane). Let R2 be equipped with the manifold
diffeology. Let H := R × [0,∞) denote the upper half plane. H equipped with the
subspace diffeology will be denoted by Hsub. H equipped with the quotient diffeology
of ρ : R2 → R2/Z2

∼= H, where Z = {1,−1} acts on R2 by k · (x, y) = (x, ky), will
be denoted by Hquo.

Show that the identity map of H is a morphism of diffeological spaces Hsub →
Hquo, but not a morphism from Hquo to Hsub. Show that π does not have a section.

Exercise 2.3 (Non-standard diffeologies on a manifold). Show that the following
collections of plots define diffeologies on a smooth manifold M :

(i) The plots are the k-times differentiable maps p : U →M . (Ck-diffeology)

(ii) Let S be a foliation of M . The plots are the smooth maps p : U → M such
that the image of Tp : TU → TM is contained in TS. (foliation diffeology)

(iii) The plots are the smooth maps p : U → M for which the rank of Tp : TU →
TM is everywhere less than or equal to 1. (Spaghetti diffeology)

Can you come up with a definition for the Fettuccine diffeology?

Exercise 2.4. Show that strong monomorphisms and strong epimorphisms are sta-
ble under retracts, that is, if there is a commutative diagram

X Y X

X ′ Y ′ X ′

i

idX

f

p

g f

i′

idX′

p′

and g is a strong monomorphism (strong epimorphism), then so is f .

Exercise 2.5. Compute the diffeological tangent spaces of the following diffeological
spaces:

(a) the half plane with the subspace diffeology Hsub from Exercise 6

(b) the folded plane with the quotient diffeology Hquot from Exercise 6

(c) the 1st quadrant X = {(x, y) ∈ R2 | x ≥ 0 ∧ y ≥ 0} with the subspace
diffeology

(d) the 1st and 3rd quadrant Y = {(x, y) ∈ R2 | xy ≥ 0} with the subspace
diffeology

Exercise 2.6. Let M be a closed manifold, that is, compact without boundary.
Let vol be a volume form on M , let m1,m2 ∈ M be two points, and let K : M →
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Dflg(M,R) be a smooth map of diffeological spaces. Consider the following maps
of sets:

f : Dflg(M,R) −→ R
f(φ) = φ(m1) + φ(m2)

g : Dflg(M,R) −→ R

g(φ) =

∫
M

φ2 vol

h : Dflg(M,R) −→ Dflg(M,R)(
h(φ)

)
(m) =

∫
M

K(m)φ vol .

Show that all three maps are morphisms of diffeological spaces and compute their
tangent maps.

Exercise 2.7. Let C∞L1(R) denote the set of integrable smooth functions on R, so
that the map

S : C∞L1(R) −→ R

φ 7−→
∫ ∞
x=−∞

φ(x) dx

is defined. Show that S is not smooth with respect to the subspace diffeology of
Dflg(R,R). (Hint: Find a smooth path of integrable functions t 7→ ht ∈ C∞(R),
such that the integral of ht for t ̸= 0 is constant and non-zero, but h0 = 0.) Is the
map φ 7→

∫∞
x=−∞ φ

2(x) dx smooth with respect to the subspace diffeology of C∞L2(R)?



Chapter 3

Locality and jets

3.1 Jets

3.1.1 Jet bundles

Definition 3.1.1. Two local sections φ and φ′ of a smooth fiber bundle F → M
defined on a neighborhood of m have the same k-jet at m, denoted by jkmφ = jkmφ

′,
if they have the same value and partial derivatives up to k-th order at m.

It is not immediately clear that this is a good definition, since the partial deriva-
tives of a section generally depend on the choice of coordinates. For example,
the section of a line bundle is given in local coordinates by an R-valued function
φ ∈ C∞(M). While this function may be constant in one set of coordinates, so that
its derivatives vanish, it will generally have non-zero derivatives in other coordinates.
But if two functions φ and φ′ have the same value and first derivatives at m in one
set of coordinates, this will be true in any coordinates, since a change of coordinates
will transform the derivatives by the same linear map. If the partial derivatives of
φ and φ′ up to k-th order are equal in one set of coordinates, it follows from the
chain rule that this remains true in any coordinates (Exercise 3.1). We conclude
that having the same partial derivatives at a point m up to a given degree k is an
equivalence relation on the space of all local sections on a neighborhood of m. The
k-jets are the equivalence classes of this relation.

m

F

M
m m

Figure 3.1: Sections of a fiber bundle F → M that have the same 0-jet, 1-jet, and
2-jet at m.
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φ(m)

φ(M)

Figure 3.2: The 1-jet at m ∈M of a smooth map φ :M → F can be identified with
the tangent plane of its image at φ(m).

Definition 3.1.2. Two smooth maps f, g : M → N of manifolds have the same
k-jet at m ∈ M if the sections m 7→ (m, f(m)) and m 7→ (m, g(m)) of the trivial
bundle M ×N →M have the same k-jet at m in the sense of Definition 3.1.1.

Remark 3.1.3. Two sections of F → M have the same k-jet at m in the sense of
Definition 3.1.1 if and only if, when viewed as smooth maps M → F , they have the
same k-jet at m in the sense of Definition 3.1.2. This shows that the two definitions
of jets are equivalent.

Terminology 3.1.4. The natural number k in Definition 3.1.1 and Definition 3.1.2
is called the order of the jet.

Example 3.1.5. Two smooth paths f, g : R → M have the same 1-jet at t = 0 if
and only if they represent the same tangent vector.

The last example shows that the concept of jets can be viewed as a generalization
of tangent vectors in two ways. First, the domain is generalized from a line R to
a higher dimensional manifold, so that tangent vectors are generalized to tangent
planes (Figure 3.2). Second, tangent planes are generalized to surfaces given by
higher order polynomials. The geometric meaning of jets is then that two sections
have the same jet at m if they have the same value (0-jet), the same tangent plane
(1-jet), the same osculating ellipsoid or hyperboloid (2-jet), etc. at m. This is
sometimes expressed by saying that, when two sections φ and φ′ have the same
k-jet at m, they are tangent to k-th order at φ(m) (Figure 3.1).

The analogy with tangent vectors can be taken further by generalizing the con-
cept of tangent spaces and tangent bundles. The set of all k-jets at m is denoted
by

JkmF = {jkmφ | for all open U ∋ m and all φ ∈ Γ(U, F )} .
The union of all jets at all m will be denoted by

JkF :=
⋃
m∈M

JkmF .
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On the set of k-jets we have the natural projection

prk,−1 : J
kF −→M , jkmφ 7−→ m,

to the base-point of every jet. The fiber of prk,−1 over m is JkmF .

Example 3.1.6. Let F = R × R → R be the trivial line bundle over R, so that
F = C∞(R). The k-jet of a function φ ∈ C∞(R) at m ∈ R can be identified with
the k-th Taylor polynomial of φ at m. This induces an isomorphism

Jkm(R× R) ∼= R[ε]/(εk+1) .

In the language of algebraic geometry, this is the ring of functions on the k-th
infinitesimal neighborhood of m.

Example 3.1.7. Let F = R×Q→ R be a trivial bundle over R. A section of F is
given by a path q : R→ Q. Its 1-jet at s is given by the tangent vector v = d

dt
q(t)|s.

This shows that a jet is given by a pair (s, v) ∈ R×TQ, so that we have a bijection

J1(R×Q) ∼= R× TQ .

The bijection of Example 3.1.7 equips J1(R×Q) with the structure of a smooth
manifold. Proving that every JkF is a smooth manifold is analogous to the tangent
manifold of a smooth manifold: We choose local bundle coordinates on F and show
that these induce local coordinates on JkF .

Let (x1, . . . , xn, u1, . . . , ur) be a system of local bundle coordinates of F , that is,
(xi) are the base coordinates and (uα) the fiber coordinates of some local trivializa-
tion. This induces coordinates (xi, uα, uαi1 , u

α
i1,i2

, . . . , uαi1,...,ik) on J
kF given by

xi, uαi1,i2,...,il : J
kF −→ R ,

xi
(
jkmφ

)
:= xi(m) ,

uαi1,i2,...,il
(
jkmφ

)
:=

∂l(uα ◦ φ)
∂xi1∂xi2 · · · ∂xil

∣∣∣
m
,

(3.1)

for all l ≤ k and all sequences i1, . . . , il of indices. In order to handle the indices
efficiently we will use multi-index notation.

Notation 3.1.8. Let (x1, . . . , xn) = (xi) be local coordinates indexed by 1 ≤ i ≤ n.
A multi-index is an n-tuple I = (I1, . . . , In) ∈ Nn

0 . It is used for the compact
notation

xI := (x1)I1(x2)I2 · · · (xn)In

of monomials in n generators. The number

|I| := I1 + I2 + . . .+ In

is called the length or order of I. Our main use of multi-indices is for higher partial
derivatives,

∂|I|

∂xI
:=

∂|I|

(∂x1)I1(∂x2)I2 · · · (∂xn)In

=
( ∂

∂x1

)I1( ∂

∂x2

)I2
· · ·
( ∂

∂xn

)In
=
( ∂
∂x

)I
.
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This suggests the notation

uαI (j
k
mφ) :=

∂|I|φα

∂xI

∣∣∣
m
. (3.2)

for the jet bundle coordinates.
For every number 1 ≤ i ≤ n, we define the concatenation of I with i by

I, i := (I1, . . . , Ii−1, Ii + 1, Ii+1, . . . , In) .

The concatenation of the multi-index 0 = (0, . . . , 0) will be denoted by 0, i = i. This
makes the multi-index notation (3.2) consistent with that of Equation (3.1). That is,
if I = i1, i2, . . . , il is the concatenated multi-index, then uαI = uαi1,...,il . While multi-
indices label the coordinates uαI uniquely, the concatenation i1, . . . , ik of different
sequences can represent the same multi-index. In fact, let I be a multi-index of
order k. Then

#{(i1, . . . , ik) ∈ {1, . . . , n}k | I = i1, . . . , ik} =
k!

I!
,

where the multi-index factorial is defined by

I! := I1!I2! · · · In! .

This combinatorial factor has to be taken into account when changing between the
summation over multi-indices I and sequences i1, . . . , ik. Let CI be some finite
sequence labelled by the multi-index I, then

∑
I

CI =
∑
k

[i1, . . . , ik]!

k!

∑
1≤i1,...,ik≤n

Ci1,...,ik , (3.3)

where [i1, . . . , ik]! denotes the multi-index factorial of the multi-index I = i1, . . . , ik.
The concatenation of two multi-indices is given by the sum

I + J = (I1 + J1, . . . , In + Jn) .

Splitting the sum over a multi-index into the sum over two concatenated multi-
indices we again have to take into account combinatorial factors,∑

I

CI =
∑
J

∑
K

J !K!

(J +K)!
CJ+K . (3.4)

As special case, we have

∑
I

CI =
∑
J

n∑
k=1

1

(Jk + 1)
CJ,k . (3.5)

Further usages of multi-indices will be explained as they occur.
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Example 3.1.9. The Taylor expansion at the point x0 of an analytic function
(φ1, . . . , φr) : Rn → Rr can be written in multi-index notation as

φα(x) =
∞∑
|I|=0

1

I!

∂|I|φα

∂xI

∣∣∣
x0
(x− x0)I ,

which shows that the jet bundle coordinates of jkmφ can be identified with the k-th
Taylor polynomial of φα at x0 = (x1(m), . . . xn(m)). In this sense, a k-jet can be
viewed as the coordinate independent version of the k-th Taylor polynomial.

It is straight-forward to show that the transition functions from one set of jet
bundle coordinates to another are smooth (see Exercise 3.1). The conclusion is the
following proposition.

Proposition 3.1.10. Let F → M be a smooth fiber bundle. Then JkF has the
natural structure of a smooth manifold and JkF →M is a smooth fiber bundle.

For every k > l ≥ 0 there is a forgetful map

prk,l : J
kF −→ J lF , jkmφ 7−→ jlmφ ,

which forgets the partial derivatives of order higher than l. In local jet coordinates
it is the projection

(xi, uα, uαi1 , . . . , u
α
i1,...,ik

) 7−→ (xi, uα, uαi1 , . . . , u
α
i1,...,il

) , (3.6)

which shows that prk,l is a surjective submersion and a map of fiber bundles over
M .

3.1.2 Jet evaluation and prolongation

Definition 3.1.11. The map

jk : F ×M −→ JkF

(φ,m) 7−→ jkmφ

is called the k-th jet evaluation.

In general, the jet evaluations are not surjective. For example, when F → M
is a non-trivial principal bundle then F has no global sections at all, so the image
of jk is empty. Another important example is the bundle of lorentzian metrics in
general relativity, which does not have a global section if the base manifold is closed
with non-vanishing Euler characteristic. This is the reason why jets are defined to
be represented by local sections. Here is a criterion for the surjectivity of the jet
evaluations.

Lemma 3.1.12. Let F →M be a smooth fiber bundle. Assume that the evaluation
j0 is surjective, that is, for every point of F there is a global section through that
point. Then the jet evaluations jk are surjective for all k > 0.
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Proof. Assume that j0 is surjective. Then for any k-jet jkmφ represented by a local
section φ, there is a global section ψ : M → F such that ψ(m) = φ(m). We can
choose local bundle coordinates (xi, uα) on an open neighborhood U × V ⊂ F such
that φ is defined on U and such that φ(U), ψ(U) are both contained in U × V .
Furthermore, we can choose the coordinates such that ψα = 0 on U . Let f be
a smooth bump function on U with support contained in U and locally constant
value 1 on a small neighborhood of m. Then there is a smooth global section χ
defined by χ(x) = ψ(x) for x /∈ U and χα(x) = f(x)φα(x) for x ∈ U , which satisfies
jkmχ = jkmφ. This shows that every k-jet has a preimage under jk.

Proposition 3.1.13. Let F → M be a smooth fiber bundle with connected fibers.
The jet evaluations jk are surjective for all k ≥ 0 if and only if F →M has a global
section.

Proof. Assume that jk : F ×M → JkF is surjective for all k ≥ 0. Then the image
of jk is non-empty, so that F must be non-empty.

Conversely, assume that φ ∈ F. Let p ∈ Fm. Since by assumption Fm is path-
connected, there is a smooth path γ : [0, 1] 7→ Fm with γ(0) = φ(m) and γ(1) = p.
Let U ⊂ M be an open neighborhood of m and F |U ∼= U × Fm a trivialization in
which the section φ is constant, i.e. φ(u) = (u, φ(m)) for all u ∈ U . Let V ⊂ U be
an open ball containing m such that the closure of V is contained in U . Then there
is a smooth bump function f : U → [0, 1] such that f(m) = 1 and f(u) = 0 for
all u ∈ U \ V . Now we can define a local section ψ : U → F which is given in the
trivialization by ψ(u) =

(
u, γ(f(u))

)
. By construction, ψ(m) = p and ψ(u) = φ(u)

for all u ∈ U \ V . The section defined by ψ on U and by φ on M \ U is a global
smooth section of F through p. This shows that j0 is surjective. It now follows from
Lemma 3.1.12 that jk is surjective for all k ≥ 0.

Proposition 3.1.14. The jet evaluations F×M → JkF are smooth maps of diffe-
ological spaces.

Proof. A path t 7→ (φt,mt) ∈ F × M is smooth in the diffeology if t 7→ φt is a
smooth homotopy of sections given by a smooth map of manifolds φ : R×M → F
and if m : R→M is a smooth map of manifolds.

Let (xi, uα) be local bundle coordinates on F . Then t 7→ φαt = uα ◦ φt and
t 7→ mi

t = xi(mt) are the paths in local coordinates. Let (xi, uαI ) be the induced
coordinates on JkF , so that

xi
(
jk(φt,mt)

)
= mi

t

uαI
(
jk(φt,mt)

)
=
∂|I|φt
∂xI

(mt) .
(3.7)

By assumption mi
t is a smooth function of t. Since all partial derivatives of the

smooth map of manifolds φ are smooth, the maps t 7→ uαI
(
jk(φt,mt)

)
are all smooth.

We conclude that R → JkF , t 7→ jk(φt,mt) is a smooth map of manifolds. This
argument generalizes from paths to smooth families in F×M that are parametrized
by open subsets of Rn.
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Proposition 3.1.15. Let φ be a section of the fiber bundle F →M . The map

jkφ :M −→ JkF , m 7−→ jkmφ ,

is a section of the k-th jet bundle, called the k-th jet prolongation of φ.

Proof. This is easily checked in local jet coordinates in which jkφ is given by

uαi1,...,ik(j
kφ) =

∂kφα

∂xi1 . . . ∂xik
, (3.8)

which is a smooth function of the local base coordinates (x1, . . . , xn).

Notation 3.1.16. In the physics literature, the right side of Equation (3.8) often
denotes both, the jet bundle coordinates of the prolongation of a single field φ and
the coordinates functions uαi1,...,ik themselves. This is analogous to the coordinates
(x1, . . . , xn) of a manifold, which can denote both, the coordinates of a single point
x and the coordinate functions of a chart. For example, consider the action in
classical mechanics, S(q) =

∫
R L
(
qα, q̇α

)
dt. On the one hand, S(q) can be viewed

as the action of a single path qα ∈ C∞(R, Q). In this case, the integrand is a closed
1-form on R, which is always exact. On the other hand, during the derivation of
the Euler-Lagrange equation, we discard exact terms under the integral. So for the
step “discarding exact terms” to be meaningful, we need to view the arguments
of L(qα, q̇α) as jet coordinate functions rather than as the coordinates of the first
prolongation of a single path qα.

Terminology 3.1.17. A section of a jet bundle JkF →M that is the prolongation
of a section of F is called holonomic, and a section that is not a prolongation non-
holonomic. This language originates historically from the theory of constrained
mechanical systems.

Remark 3.1.18. Proposition 3.1.15 allows us to view the k-th jet evaluation equiv-
alently as map

jk : F −→ Γ(M,JkF ) , φ 7−→ jkφ ,

which is a morphism of diffeological spaces.

Proposition 3.1.19. Let f : E → F be a morphism of smooth fiber bundles over
M . Then

Jkf : JkE −→ JkF

jkmφ 7−→ jkm(f ◦ φ) ,
is a well-defined morphism of fiber bundles overM called the k-th jet prolongation
of f .

Proof. It follows from the chain rule for partial derivatives that jkm(f ◦ φ) depends
only on jkmφ, so that jkf is well-defined. The chain rule also shows that jkf is
smooth.

Remark 3.1.20. If E = M is the rank 0 fiber bundle over M , a smooth map
E → F covering the identity is a section of F . Its k-th prolongation in the sense of
Proposition 3.1.19 is the prolongation in the sense of Proposition 3.1.15.
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Let f : F → F ′ and g : F ′ → F ′′ be morphisms of smooth fiber bundles over M .
Let φ be a section of F . Then(

Jk(g ◦ f)
)
(jkmφ) = jkm

(
(g ◦ f) ◦ φ

)
= jkm

(
g ◦ (f ◦ φ)

)
= jkg

(
jkm(f ◦ φ)

)
= jkg

(
(Jkf)(jkmφ)

)
= (Jkg ◦ Jkf)(jkmφ) ,

which shows that the jet prolongation is functorial. This can be stated as follows.

Proposition 3.1.21. Jk is an endofunctor of the category of smooth fiber bundles
over M .

Example 3.1.22. Let E = R × X and F = R × Y be trivial bundles over R. A
smooth map f : X → Y of the fibers can be viewed as morphism f̃ : (t, x) 7→ (t, f(x))
of smooth fiber bundles over R. Its first jet prolongation is given by

J1f̃ : J1(R×X) ∼= R× TX −→ R× TY ∼= J1(R× Y )

(t, v) 7−→
(
t, Tf(v)

)
,

where we have used Example 3.1.7. This shows that the first jet prolongation of f
at a fixed time is the tangent map of f .

3.1.3 The affine structure of jet bundles

Two local sections φ and φ′ of ρ : F →M have the same 1-jet at m if they have the
same value φ(m) = φ′(m) and the same derivative Tmφ = Tmφ

′ : TmM → Tφ(m)F .
Since φ is a section of ρ, Tmφ is a section of Tφ(m)ρ : Tφ(m)F → TmM . It follows
that a 1-jet of F is given by a subspace of a tangent space TpF that is mapped by
Tρ bijectively to Tρ(p)M . By definition, an Ehresmann connection is given by the
choice of such a subspace of the tangent space, called the horizontal tangent space,
at every point of the bundle. We thus arrive at the following observation.

Observation 3.1.23. An Ehresmann connection of F →M can be identified with
a section of the bundle pr1,0 : J

1F → F .

Observation 3.1.23 can be used to express the bundle J1F → F in terms of other
definitions of connections. An Ehresmann connection can be given by a section of
the morphism

TF
(Tρ,prF )−−−−−−→ TM ×M F

of fiber bundles over M . Such a section

h : TM ×M F −→ TF

is called a horizontal lift. Let h′ be another horizontal lift. Then

Tρ
(
h′(vm, f)− h(vm, f)

)
= 0
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for all vm ∈ TM and p ∈ Fm. It follows that two horizontal lifts differ at each point
p ∈ F by a linear map Tρ(p)M → VpF , where V F := kerTρ is the vertical tangent
bundle of F . The vector space of such linear maps can be identified with

Hom(Tρ(p)M,VpF ) ∼= T ∗ρ(p)M ⊗ VpF .

It follows that the difference between two horizontal lifts is given by a section of the
vector bundle

ρ∗(T ∗M)⊗ V F −→ F ,

where ρ∗(T ∗M) := F ×M T ∗M denotes the pullback bundle. Returning to observa-
tion 3.1.23, we see that the choice of a horizontal lift h, which can be identified with
a section of J1F → F , induces the following isomorphism of bundles over F ,

J1F −→ ρ∗(T ∗M)⊗ V F
j1mφ 7−→

[
vm 7→ (Tmφ)vm − h

(
vm, φ(m)

)]
.

The upshot is summarized in the following proposition.

Proposition 3.1.24. Let ρ : F → M be a smooth fiber bundle. The fiber bundle
J1F → F is an affine bundle modelled on the vector bundle ρ∗(T ∗M)⊗ V F .

From Proposition 3.1.24 we recover the well-known fact that the set of connec-
tions, which can be identified with the set of sections of J1F → F , is an affine
space (see Proposition 8.3.2 and Proposition 8.3.10). Another consequence is that
the sheaf of sections of J1F → F is soft, that is, sections on a closed subset can be
extended to global sections. Proposition 3.1.24 can be generalized to the following
statement.

Proposition 3.1.25. Let F → M be a smooth fiber bundle. For every k > 0, the
forgetful map prk,k−1 : JkF → Jk−1F is an affine bundle modelled on the vector
bundle pr∗k−1,−1(S

kT ∗M))⊗pr∗k−1,0(V F ), where prk−1,−1 : J
k−1F →M is the bundle

map, SkT ∗M the symmetric tensor product of the vector bundle T ∗M → M , and
prk−1,0 : J

k−1F → F the forgetful map.

Proposition 3.1.25 can be proved using jet coordinates, which is somewhat te-
dious (see e.g. Thm. 5.1.7 and Thm. 6.2.9 in [Sau89]). We will use that prk : J

kF →
Jk−1F is naturally embedded as subbundle into the affine bundle J1(Jk−1F ) →
Jk−1F . The embedding is given by the following lemma.

Lemma 3.1.26. For all k, l ≥ 0 there is a natural embedding

ιk,l : J
k+lF −→ Jk(J lF ) , jk+lm φ 7−→ jkm(j

lφ) , (3.9)

for all local sections φ.

Proof. The k-th order partial derivatives of the l-th prolongation of a local section
φ of F → M are the (k + l)-th oder partial derivatives of φ. This implies that the
k-jet of jlφ at m depends only on the (k + l)-jet of φ at m, which shows that ιk,l is
well-defined. It is easily checked in local jet coordinates that ιk,l is an embedding.
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It is instructive to spell out the embedding of Lemma 3.1.26 in local coordinates.
Let (xi, uα) be local fiber bundle coordinates on F |U for some open U ⊂M . These
induce jet bundle coordinates as in Equation (3.1). A local section η : U → J lF of
the l-th jet bundle is given in local coordinates by

η = (ηα, ηαi1 , . . . , η
α
i1,...,il

) ,

where ηαi1,...,il = uαi1,...,il ◦ η. Its k-th jet at m is given in coordinates by

jkmη =


ηα, ηαi1 , . . . , ηαi1,...,il
∂ηα

∂xj1
,

∂ηαi1
∂xj1

, . . . ,
∂ηαi1,...,il
∂xj1

...
...

. . .
...

∂kηα

∂xj1 ···∂xjk ,
∂kηαi1

∂xj1 ···∂xjk , . . . ,
∂kηαi1,...,il
∂xj1 ···∂xjk


m

The embedding ιk,l maps a (k + l)-jet jk+lm φ to

ιk,l(j
k+l
m φ) =


φα, ∂φα

∂xi1
, . . . , ∂lφα

∂xi1 ···∂xil
∂φα

∂xj1
, ∂2φα

∂xi1∂xj1
, . . . , ∂1+lφα

∂xj1∂xi1 ···∂xil
...

...
. . .

...
∂kφα

∂xj1 ···∂xjk ,
∂k+1φα

∂xj1 ···∂xjk∂xi1 , . . . , ∂k+lφα

∂xj1 ···∂xjk∂xi1 ···∂xil


m

The prolongation Jkprl,n : Jk(J lF ) → Jk(JnF ) of the forgetful map prl,n : J lF →
JnF , n ≤ l, drops the last l − n columns of the coordinate matrix.

Proof of Prop. 3.1.25. The map

JkF J1(Jk−1F )

Jk−1F

ι1,k−1

embeds the fiber bundle E := JkF → Jk−1F into the fiber bundle J1(Jk−1F ) →
Jk−1F , which by Proposition 3.1.24 is an affine bundle modelled on the vector bundle
A = pr∗k−1,−1T

∗M ⊗ V Jk−1F . An element j1mη ∈ J1(Jk−1F ) represented by a local

section η : U → Jk−1F is in the image of ι1,k−1 if and only if there is a local section
φ : U → F such that (

ηα, ηαi1 , . . . , ηαi1,...,ik−1

∂ηα

∂xj1
,

∂ηαi1
∂xj1

, . . . ,
∂ηαi1,...,ik−1

∂xj1

)
m

=

(
φα, ∂φα

∂xi1
, . . . , ∂lφα

∂xi1 ···∂xik−1

∂φα

∂xj1
, ∂2φα

∂xi1∂xj1
, . . . , ∂kφα

∂xj1∂xi1 ···∂xik−1

)
m

.

(3.10)

We have to show that there is a fiber-wise free and transitive action of the additive
group of the vector bundle B := pr∗k−1,−1(S

kT ∗M))⊗ pr∗k−1,0(V F ) on ιl,k−1(J
kF ) ⊂
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J1(Jk−1F ). An element of B is given by a jet jk−1m φ ∈ Jk−1F together with a linear
map

θ : SkTM −→ Vφ(m)F .

Given such a θ, there is a local section ψ : U → F , such that jk−1m ψ = jk−1m φ and

∂kψα

∂xj1∂xi1 · · · ∂xik
∣∣∣
m
=

∂kφα

∂xj1∂xi1 · · · ∂xik
∣∣∣
m
+ θαi1,...,ik .

This defines a fiber-wise free and transitive action of pr∗k−1,−1(S
kT ∗M))⊗pr∗k−1,0(V F )

on JkF .

3.2 Local maps

3.2.1 Local maps and differential operators

Definition 3.2.1. Let F = Γ(M,F ) and F′ = Γ(M,F ′) be the sets of sections of
smooth fiber bundles F → M and F ′ → M . A map f : F → F′ is called local of
jet order k if there is a smooth map f0 : J

kF → F ′, such that the following diagram
commutes:

F ×M F′ ×M

JkF F ′

f×idM

jk j0

f0

(3.11)

Terminology 3.2.2. A local map in the sense of Definition 3.2.1 is also called a
differential operator, although this terminology is more commonly used when F
and F ′ are trivial vector bundles, so that F and F′ are function spaces.

Example 3.2.3. The Laplace operator f = ∆ : C∞(R3) → C∞(R3) of Exam-
ple 1.2.1 descends to the map f0 : J

2(R3 × R)→ R3 × R given by

f0 =
(
(x1, x2, x3), u11 + u22 + u33

)
in terms of jet bundle coordinates.

Example 3.2.4. Let F ′ = TM → M , so that F′ = X(M) is the space of vector
fields. The product of the space of vector fields is the space of sections

X(M)× X(M) ∼= Γ(M,TM ×M TM) ,

of the vector bundle F := TM ×M TM . The Lie bracket of vector fields X(M) ×
X(M)→ X(M) is a local map, which descends to J1F .

Example 3.2.5. A special case for a fiber bundle over M is the trivial bundle

F ′ = M
id→ M , which is the terminal object in fiber bundles over M . The space of

fields is given by a point ∗ = {idM}. The terminal map

F −→ ∗
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descends to the bundle map J0F = F → M , so it is local of jet order 0. Similarly,
every point

ιφ : ∗ ↪−→ F

mapping ∗ to a field φ ∈ F descends to the map φ : J0M = M → F , so it is also
local of jet order 0.

Example 3.2.6. The map f : C∞(R)→ C∞(R) given by

f(φ) :=
∞∑
k=0

2−k
(
arctan ◦∂

kφ

∂xk

)
is not local, since the value of f(φ) at x depends on derivatives of arbitrarily large
order.

Example 3.2.7. A lagrangian L : F → Ωn(M) is local in the sense of Defini-
tion 1.3.5 if it is local in the sense of Definition 3.2.1.

Proposition 3.2.8. If a map F → F′ is local, then it is smooth, that is, a morphism
of the diffeological spaces of fields.

Proof. Let f0 : JkF → F ′ be the smooth map to which the map f : F → F′

descends. Then f is given by

f(φ) = f0 ◦ jkφ , (3.12)

for all φ ∈ F. Since jk is smooth by Proposition 3.1.14, and f0 is smooth by
Definition 3.2.1, so is their composition f = f0 ◦ jk.

The composition of differential operators on functions on some domain of Rn

is again a differential operator. This suggests that the composition of local maps
f : F → F′ and g : F′ → F′′ should be local as well. However, the maps f0 : J

kF →
F ′ and g0 : J lF ′ → F ′′, to which f and g descend by Definition 3.2.1, cannot be
composed directly, since the target of f0 and the source of g0 do not match. Instead
we have to use Equation (3.12), which yields

(g ◦ f)(φ)
∣∣
m
= g
(
f(φ)

)∣∣
m
= g0

(
jlm(f(φ)

)
= g0

(
jlm(f0 ◦ jkφ)

)
= (g0 ◦ jlf0)

(
jlm(j

kφ)
)
,

where we have used Proposition 3.1.19. The right side is not yet a function on some
jet bundle of F . This issue is resolved by Lemma 3.1.26, which leads to the following
proposition.

Proposition 3.2.9. The composition of two local maps is a local map.

Proof. Let f : F → F′ and g : F′ → F′′ be local maps, which descend to f0 : J
kF →

F ′ and g0 : J lF ′ → F ′′, respectively. Let ιl,k : Jk+lF → J l(JkF ) be the injective
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immersion of Lemma 3.1.26 and J lf0 : J
l(JkF )→ J lF ′ the l-th jet prolongation of

f0. Then we have the following commutative diagram,

F ×M F′ ×M F′′ ×M

Jk+lF J l(JkF ) J lF ′ F ′′

JkF F ′

jk+l

f×idM

jl

g×idM

j0

ιl,k J lf0
g0

f0

where Jk+lF → JkF , J l(JkF ) → JkF , and J lF ′ → F ′ are the obvious forgetful
maps. If we define fl := J lf0 ◦ ιl,k, we see that (g ◦ f)× idM descends to g0 ◦ fl. We
conclude that g ◦ f is local.

Remark 3.2.10. Proposition 3.2.9 is a generalized version of the fact that the com-
position of a k-th order differential operator with an l-th order differential operator
is a differential operator of order k + l.

Corollary 3.2.11. Spaces of sections of fiber bundles over M and local maps are a
subcategory of Dflg.

Let F → M be a fiber bundle and F ′ → M a vector bundle. Let f : F → F′

be a local map that descends to f0 : JkF → F ′. A field φ ∈ F is a solution of the
equation

f(φ) = 0 (3.13)

if and only if

M
jkφ−−→ JkF

f0−→ F ′

is the zero map. This shows that Equation (3.13) is a partial differential equation
(PDE).

Remark 3.2.12. Finding solutions of a PDE is generally very difficult. It may
be easier to first try to find sections ψ : M → JkF of the jet bundle such that
f0◦ψ = 0. Such sections are called formal solutions or non-holonomic solutions
of the PDE. In a second step, we can determine those formal solutions for which
ψ = jkφ is the k-th prolongation of a field φ ∈ F, which are sometimes called
holonomic solutions. The images of the tangent maps of the jet prolongations
Tjkφ : TM → TJkF of all fields φ define a distribution on JkF , called the Cartan
distribution. If we want to extend a point x ∈ f−1(0) to a holonomic solution
on a neighborhood of m, the tangent space Txf

−1(0) ⊂ TxJ
k
mF must be a subspace

of the Cartan distribution. Pursuing this approach leads to Cartan-Kähler theory
[BCG+91].

Remark 3.2.13. For some PDEs it can be proved that every formal solution is
connected by a homotopy to an actual solution. To show that the PDE has a
solution it then suffices to solve it formally, which is generally much easier. This
approach is called the homotopy principle, or h-principle [EM02].
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Proposition 3.2.14. The tangent map of a local map is local of the same jet order.

Proof. Let f : F → F′ be a morphism of diffeological spaces of fields. Let t 7→ ψt ∈ F

be a smooth path with ψ0 = φ that represents the tangent vector ξφ := ψ̇0 ∈
TF = Γ(M,V F ). Then the smooth path t 7→ f(ψt) represents the tangent vector
(Tf)ξφ ∈ TF′ = Γ(M,V F ′).

Assume now that f descends to f0 : JkF → F ′, so that f(ψt) = f0 ◦ jkψt. In
local coordinates we obtain(

(Tφf)ξφ
)β
(x) =

d

dt

(
fβ(ψt)

)
(x)
∣∣
t=0

=
d

dt
fβ0
(
jkxψt

)∣∣
t=0

=
∑
|I|≤k

∂fβ0
∂uαI

(jkxφ)
d

dt
uαI
(
jkxψt

)∣∣
t=0

=
∑
|I|≤k

∂fβ0
∂uαI

(jkxφ)
∂|I|ξαφ
∂xI

.

The right side depends only on derivatives of φα and ξαφ at x up to k-th order,
i.e. only on jkxξφ.

Corollary 3.2.15. Let f : F → F′ be a local map of jet order k. Let φ ∈ F. Then
the linear map Tφf : TφF → Tf(φ)F

′ is local of jet order k.

Terminology 3.2.16. The linear differential operator Tφf is called the lineariza-
tion at φ of the differential operator f .

3.2.2 Local maps of products

Let E → M and F → M be smooth fiber bundles. The product of the spaces of
fields is itself a space of fields,

E× F ∼= Γ(M,E ×M F ) .

The k-th jet bundle of E ×M F is given by

Jk(E ×M F ) ∼= JkE ×M JkF .

Lemma 3.2.17. Let E → M and F → M be smooth fiber bundles. Then the
projection E×F → E, the diagonal E→ E×E, and the flip E×F → F×E descend
to smooth maps of the fiber bundles over M , i.e. they are local of jet order 0.

Proof. The projection is induced by the fiber-wise projection E ×M F → E, the
diagonal by the fiber-wise diagonal E → E ×M E and the flip by the fiber-wise flip
E ×M F → F ×M E.

Lemma 3.2.18. Let E → M , F → M , E ′ → M , and F ′ → M be smooth fiber
bundles. Let f : E → E′ and g : F → F′ be a maps of the spaces of fields. If f and
g are local, then the product map

f × g : E× F −→ E′ × F′

is local.
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Proof. By assumption, f descends to f0 : JkE → E ′ and g descends to a map
g0 : J lF → F ′. Without loss of generality let k ≥ l. Then g also descends to
the map g′0 = g0 ◦ prk,l : JkF → F ′. It follows that f × g descends to the map
h0 : J

k(E ×M F )→ E ×M F defined by

h0
(
jkm(ψ, φ)

)
=
(
f0(j

k
mψ), g

′
0(j

k
mφ)

)
,

which shows that f × g is local.

Lemma 3.2.19. Let E → M , F → M , and F ′ → M be smooth fiber bundles. Let
f : E×F → F′ be a map of spaces of fields. If f is local then there is a k <∞, such
that the maps

f( , φ) : E −→ F′

f(ψ, ) : F −→ F′

are local of jet order k for all φ ∈ F and ψ ∈ E.

Proof. The map f( , φ) is given by the composition

E ∼= E× ∗ idE×ιφ−−−−−→ E× F
f×g−−−→ F′ ,

where ιφ is the inclusion of φ of example 3.2.5. Since idE and ιφ are local, their
product is local by Lemma 3.2.18. Since idE × ιφ and f are local, their composition
f( , φ) is local by Proposition 3.2.9. An analogous argument shows that f(ψ, ) is
local, too.

3.2.3 Linear local maps of jet order 0 and 1

Assume that A → M and B → M are vector bundles. Let D : A → B be a k-th
order local map, so it descends to a map D0 : J

kA→ B for some k ≥ 0. D is linear
if and only if D0 is in local jet coordinates of the general form

Dβ
0 =

k∑
|I|=0

DβI
α (x)uαI ,

where (xi, uα) are local vector bundle coordinates on A|U for some U ⊂ M , where
(xi, vβ) are coordinates on B|U , and where the DβI

α are smooth functions on U . The
linear map D is given in terms of these functions by

(Da)β =
k∑
|I|=0

DβI
α

∂|I|aα

∂xI
. (3.14)

Proposition 3.2.20. A linear map D : A → B of sections of vector bundles is
induced by a map D0 : A → B of vector bundles if and only if it is C∞(M)-linear,
i.e.

D(fa) = f Da

for all a ∈ A and f ∈ C∞(M).
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Proof. The proposition follows from Equation (3.14) for k = 0.

Proposition 3.2.21. A linear map D : A → B of sections of vector bundles is a
first order differential operator if and only if there is a vector bundle map P : A→
B ⊗ TM , such that

D(fa) = f Da+ ⟨P (a), df⟩ (3.15)

for all a ∈ A and f ∈ C∞(M).

Proof. Assume that D is a linear first order local map. By Equation (3.14), D is
given in local coordinates by

(Da)β = Dβ
αa

α +Dβi
α

∂aα

∂xi
. (3.16)

It follows that (
D(fa)

)β
= Dβ

αfa
α + f Dβi

α

∂aα

∂xi
+ aαDβi

α

∂f

∂xi
.

So if we define P in local coordinates by

P (a)β := aαDβi
α

∂

∂xi
, (3.17)

then Equation (3.15) follows.
Conversely, assume that Equation (3.15) holds. Let σα be the basis of local

sections of A such that uα(σα′) = δαα′ and let τβ be the basis of local sections of B

such that vβ(τβ′) = δββ′ . Let D
α
β be the unique local functions, such that

D(σα) = Dβ
ατβ .

P be given in local coordinates by (3.17) for some local functions Dβi
α . A general

local section is of the form a = aασα. Using Equation (3.15), we get

D(a) = D(aασα) = aαD(σα) + ⟨P (σα), aα⟩

= aαDβ
α +Dβi

α

∂aα

∂xi
,

which has the form of a linear first order local map.

3.3 The theorems of Peetre and Slovák

3.3.1 Locality in topology

In topology, “local” roughly means “compatible with the restriction to open sub-
sets”. In this sense, a map f : F → F′ of sections of fiber bundles is considered to
be local if the restriction of f(φ) to any open subset U ⊂ M depends only on the

restriction of φ to U . Let F̂ denote the sheaf of sections, given by

F̂(U) := Γ(U, F |U) ,

for every open U ⊂ M . The set of global sections is F = F̂(M). A morphism

of sheaves is given by a map f̂U : F̂(U) → F̂′(U) for every open subset U ⊂ M
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that commutes with the restrictions to every open subset V ⊂ U , i.e. the following
diagram commutes.

F̂(U) F̂′(U)

F̂(V ) F̂′(V )

resU,V

f̂U

res′U,V

f̂V

A map f : F → F′ is considered to be local in the sense of topology if there is a
morphism of sheaves f̂ : F̂ → F̂′ such that f = f̂M .

Proposition 3.3.1. If f : F → F′ is local (in the sense of Definition 3.2.1), then it
is induced by a morphisms of sheaves.

Proof. Let f0 : J
kF → F ′ be the map f descends to. Let

f̂U(φ) := f0 ◦ jkφ

for all φ ∈ Γ(U, F |U). The restrictions of the jet prolongation jk|U : Γ(U, F |U) →
Γ(U, JkF |U) define a morphism of sheaves; and the morphism of fiber bundles f0
induces a morphism of the sheaves of sections. Therefore, the composition is a
morphism of sheaves.

Let f : F → F′ be induced by a morphism of sheaves. Then for every m ∈ M ,
the restriction of f(φ) to a neighborhood U of m depends only on the restriction of
f to U . Since the neighborhood U is arbitrarily small, it follows that the value of
f(φ) at m depends only on the germ of f at m.

Recall that the germ of a function φ at m is the equivalence class of functions
ψ that have a the same restriction ψ|U = φ|U to some neighborhood U of m. If
two functions have the same germ, then they have the same partial derivatives to all
orders. The converse is clearly not true. For example, the derivatives of the function
φ(x) = exp(−1/x2) on the real line are all zero at x = 0, so it has the same jets as
ψ(x) = 0, but φ and and ψ do not have the same germ at 0. The germ of a section
φ of a fiber bundle at some point m contains more information about the function
than the jet jkmφ. Therefore, the condition that f(φ)m depends only on the germ of
φ at m is weaker than the condition that it depends on a finite jet, as required by
the definition 3.2.1 of locality.

3.3.2 Peetre’s theorem

Surprisingly, with rather mild additional assumptions a map f : F → F′ that is
induced by a morphism of sheaves is local (in the sense of Definition 3.2.1). We first
consider the linear case.

Theorem 3.3.2 (Peetre). Let A → M and B → M be vector bundles over a
compact base. Let D : A → B be a linear map. If D is induced by a morphism of
sheaves of vector spaces, then it is local.
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Lemma 3.1.12 implies that all jet evaluations jk : A×M → JkA are surjective.
It follows, that if the map D : A→ B descends to a map JkA→ B, then this map
must be given by

D0 : J
kA −→ B

jkmφ 7−→ (Dφ)(m) .
(3.18)

In the first step, we have to show that the map (3.18) is well defined. For this we
will use the following lemma.

Lemma 3.3.3. Let D : C∞(Rn,Rp) → C∞(Rn,Rq) be a support non-increasing
linear map. Then for every point x ∈ Rn and every real constant c > 0 there is a
neighborhood U of x and a natural number r ≥ 0, such that for all y ∈ U \ {x} and
φ ∈ C∞(Rn,Rp) the condition jryφ = 0 implies ∥(Dφ)(y)∥ ≤ c.

Proof. Assume that the statement is false. This means that there is a point x ∈ Rn

and a constant c > 0, such that for every neighborhood U of x and every r ≥ 0 there
is a y ∈ U , y ̸= x and a φ ∈ C∞(Rn,Rp), such that jkyφ = 0 and ∥(Dφ)(x)∥ > c. By
choosing a sequence of shrinking neighborhoods U0 ⊃ U1 ⊃ . . . with

⋂
k Uk = {x},

we can find a sequence yk → x and a sequence φk ∈ A, such that jkykφk = 0 and
∥(Dφk)(yk)∥ > c.

By selecting a suitable subsequence, the relations ∥yk − x∥ ≤ 4∥yk − xj∥ can be
satisfied for all k > j. Let us choose smooth maps ψk ∈ C∞(Rn,Rp) that have the
same germ as φk at yk and are zero outside of the ball of radius 1

2
around yk. Since

the germs are the same, so are the jets jkykψk = jkykφk = 0. Because the jets at yk are
zero, the functions ψk can be chosen such that their partial derivatives are bounded
in the supremum norm by ∥∥∥∂|I|ψk

∂xI

∥∥∥
sup
≤ 2−k ,

for all multi-indices I of order |I| ≤ k. Due to this condition, the map defined
point-wise by

ψ(y) :=
∞∑
l=0

ψ2l(y)

for all y ∈ Rn is smooth. By construction, the points y2l+1 lie outside of the support
of ψ. By assumption, D is support non-increasing so that y2l+1 also lies outside of
the support of Dψ,

(Dψ)(y2l+1) = 0 .

Since D is support non-increasing, (Dψ)(y2l) only depends on the germ of ψ2l at y2l
which is equal to the germ of φ2l at y2l, so that

(Dψ)(y2l) = (Dφ)(y2l) .

It follows that yk → x is a convergent sequence, such that

∥(Dψ)(y2l)∥ > c , ∥(Dψ)(y2l+1)∥ = 0 ,

which shows that Dψ is not continuous at x. This is a contradiction to the assump-
tion that the lemma does not hold.
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In order to show that the D0 is smooth, we will use Boman’s theorem.

Theorem 3.3.4. Let f : Rm → Rn be a map, such that such that for every smooth
path γ : R→ Rm the path f ◦ γ : R→ Rn is smooth. Then f is smooth.

Proof. The original proof is in [Bom67]. A more pedagogic proof is found in Thm. 3.4
in [KM97].

Proof of Thm. 3.3.2. Choose c = 1 and apply Lemma 3.3.3 in a coordinate neigh-
borhood of every point m ∈ M . This yields a cover of neighborhoods Ui with jet
orders ri as in the lemma. Since M is compact, we can choose a finite subcover. Let
r < ∞ be the maximum of the ri. Then jrmφ = 0 implies that ∥(Df)(m)∥ < 1 for
all m ∈M .

Let jkmφ = 0 and assume that ∥(Dφ)(m)∥ = ε > 0. Then jkm(
ε
2
φ) = 0, but

∥(D 2
ε
φ)(m)∥ = 2 > 1, which is a contradiction, so that (Dφ)(m) = 0. It follows,

that (3.18) is a well defined fiber-wise linear map.

It remains to show that D0 is smooth. As can be easily seen in local coordinates,
every smooth path in JrA can be written as t 7→ jrmt

φt, where t 7→ φt is a smooth
family of sections of A and t 7→ mt a smooth path in M . Since D is linear, Dφt is
a smooth family of smooth maps. It follows that t 7→ (Dφt)(mt) is a smooth path.
This shows that every smooth path jrmt

φt in J
rA is mapped by D0 to a smooth path

in B. It now follows from Boman’s Theorem 3.3.4 that D0 is smooth.

3.3.3 The nonlinear case

Theorem 3.3.5 (Slovák). Let F → M , F ′ → M be smooth fiber bundles. Let
f : F → F′ be induced by a morphism of sheaves of diffeological spaces. Then for
every φ ∈ F and every m ∈ M there is an open neighborhood U ∋ m and an open
subbundle E ⊂ F |U containing φ(U), such that the restricted map f |E is local (in
the sense of Definition 3.2.1).

The original proof, which is quite involved, can can be found in [Slo88]. A more
pedagogic presentation is in [KMS93]. There is a somewhat modernized formulation
of the theorem in [NS]. For a recent discussion of the Peetre-Slovák theorem in
relation to field theory, we refer the reader to Appendix A in [KM16, Appendix A].

The original statement of Slovák is somewhat more general. It allows for the
basis of the target bundle F ′ to be a different manifold M ′ ̸= M and assumes that
there is a map η : M ′ → M such that f(φ)|m′ depends only on the germ of φ at
η(m′) for all m′ ∈ M ′. But this is the same as saying that there is a morphism of

sheaves from the pullback sheaf η∗F̂ to F̂′.

Terminology 3.3.6. The condition that f is a morphism of diffeological spaces is
called “regularity” in [Slo88,KMS93].

Corollary 3.3.7. Let F →M , F ′ →M be smooth fiber bundles. Let F be compact.
Then a map f : F → F′ is local if and only if it is induced by a morphism of sheaves
in diffeological spaces.
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A casual way of rephrasing Corollary 3.3.7 is by saying that for sections of com-
pact fiber bundles smooth sheaf-locality is the same as jet-locality. In the non-
compact case the jet order may be only locally but not globally finite, so that
Definition 3.2.1 is a stronger version of locality. It is debatable, whether global or
local finiteness of the jet order is the more appropriate condition in field theory.
Ultimately, this will depend on and be justified by the application.

We will not give a proof of Theorem 3.3.5. But we will state an important
technical step, which is interesting in its own right: The Whitney extension theorem
gives the exact conditions for a collection of functions on a closed subset of Rn to
be the partial derivatives of a smooth function on Rn.

Theorem 3.3.8. Let K ⊂ Rn be a closed set. Let φI : K → R be continuous
functions defined for all multi-indices I ∈ Nn

0 . The following are equivalent:

(i) For every r ≥ 0

φI(b) =
∑
|J |≤r

1

J !
φI+J(a)(b− a)J + o(|b− a|r) (3.19)

holds uniformly for |b− a| → 0, a, b ∈ K.

(ii) There is a smooth function φ ∈ C∞(Rn) such that

φI =
∂|I|φ

∂xI

∣∣∣
K
.

Proof. The original proof where K was assumed to be compact is in [Whi34]. It
was first observed in [Bie80] that K being closed is sufficient. For a more pedagogic
proof see [H0̈3].

The condition (3.19) for the functions φI imply that φI =
∂|I|φ
∂xI

in the interior of

K. Conversely, if φ is a smooth function and φI = ∂|I|φ
∂xI

, then (3.19) follows from
Taylor’s theorem. This shows that Equation (3.19) is always satisfied in the interior
of K.

When K = ∗ is a point, condition (3.19) is always satisfied, which implies that
any collection of real numbers cI for all multi-indices I can be realized as partial
derivatives of a smooth function. This is the content of the Borel lemma. In its
simplest form it can be stated as follows.

Lemma 3.3.9. For any infinite sequence of real numbers c0, c1, c2, . . . there is a
smooth function φ ∈ C∞(R), such that cn = dnφ

dxn

∣∣
x=0

.

3.4 Infinite jets

A local map of fields descends to a map on the manifold of jets of a finite but
arbitrarily large order. When two local maps are composed, their jet orders are
added. So even though we can describe a single local map in terms of a map on a
finite jet manifolds, we need the jet manifolds of all orders to deal with the category
of all local maps. This suggests the following definition.
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Definition 3.4.1. Two local sections φ and φ′ of a smooth fiber bundle F → M
defined on a neighborhood of m have the same infinite jet or∞-jet at m, denoted
by j∞mφ = j∞mφ

′, if they have the same k-jet at m for all k ≥ 0.

Since having the same k-jet at m is an equivalence relation on the set of local
sections, having the same ∞-jet is an equivalence relation as well. An ∞-jet is an
equivalence class for this relation. The set of all ∞-jets will be denoted by J∞F .

Given local bundle coordinates (xi, uα), j∞mφ is uniquely determined by the co-
ordinates xi(m) of the base point and the jet coordinates

uαI (j
∞
mφ) =

∂|I|φα

∂xI

∣∣∣
m

for all α and all multi-indices I. Conversely, the Whitney extension Theorem 3.3.8
tells us that, given numbers cαI for all α and I, there is a local section such that
uαI (j

∞
mφ) = cαI . In this sense, the infinite collection {xi, uα, uαi1 , . . .} of real valued

functions on J∞F can be viewed as a set of coordinates.
For every k ≥ 0, there are natural forgetful maps of sets pr∞,k : J∞F → JkF ,

j∞mφ 7→ jkmφ. The forgetful maps satisfy prk,k−1 ◦pr∞,k = pr∞,k−1, so they define the
commutative diagram

J∞F

J0F J1F J2F . . .

As can be easily seen in jet coordinates, any other cone over the diagram J0F ←
J1F ← J2F ← . . . induces a unique map to J∞F , which shows that J∞F is the
categorical limit of the sequence of the sets of finite jets.

How do we equip J∞F with a differentiable structure? Since the dimension of
the jet manifolds JkF increases with k, the limit of the sequence of the jet manifolds
JkF cannot exist in the category of finite dimensional manifolds. In order to make
sense of this limit we, therefore, have to embed Mfld as subcategory into an ambient
category C in which such limits exist. Let us write down a wish list of some of the
properties this category should have.

Wish list 3.4.2. A good category C for J∞F should have the following properties:

(i) There is an injective, full, and faithful functor I : Mfld→ C.

(ii) For every infinite inverse sequence of manifolds X0 ← X1 ← . . . the limit
X̌ := lim(I(X0)← I(X1)← . . .) exists in C.

(iii) There is a faithful functor Ǔ : C → Set, such that for every limit X̌ as in (ii)
there is a natural isomorphism Ǔ(X̌) ∼= limi∈IMfld(∗, Xi) of sets.

(iv) Given a limit X̌ as in (ii), every morphism X̌ → I(Y ) to a manifold Y factors

as X̌ → I(Xk)
I(f)−−→ I(Y ) through a smooth map f : Xk → Y .
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Let us motivate this wish list. Property (i) states that Mfld can be embedded
as full subcategory into C. Property (ii) ensures that the limit

J∞F := lim(I(J0F )← I(J1F )← . . .)

exists in C. Property (iii) requires C to have the structure of a concrete category such
that the the underlying set of J∞F is the set of infinite jets from Definition 3.4.1.
Finally, Property (iv) states that all morphisms out of J∞F descend to a finite jet
manifold, that is, they are differential operators.

In Chapter 2, we have solved a similar problem with the category diffeological
spaces. In fact, Dflg satisfies conditions (i), (ii), and (iii) of the wish list 3.4.2.
Condition (iv), however, is not satisfied by Dflg as the following example shows.

Example 3.4.3. Consider the fiber bundle F = R × R → R = M with space of
sections F = C∞(R). The map of Example 3.2.6 can be viewed as a map on the
infinite jet bundle

f : J∞(R× R) −→ R

f(j∞x φ) :=
∞∑
k=0

2−k arctan
(∂kφ
∂xk

)
,

which does not descend to a map on any finite jet manifold Jk(R × R). A map
U → J∞F , U ∈ Eucl is a plot of the limit diffeology if and only if the compositions
U → J∞F → J lF for all l ≥ 0 are smooth. It follows that all partial sums of
f ◦ p : U → R are smooth. Since the arctangent and all its derivatives are bounded
by 1, the convergence of the sum is uniform. It follows that f ◦ p is smooth. Since
f is a function on J∞F that is smooth with respect to the limit diffeology but does
not descend to a finite jet manifold, we conclude that Dflg does not satisfy condition
(iv) of the wish list.

Exercises

Exercise 3.1. Let f, g :M → R be functions on a smooth n-dimensional manifold.
Let x = (x1, . . . , xn) : U → Rn be local coordinates on a neighborhood U of m. Let
k be a natural number. Show that if

∂lf

∂xi1 · · · ∂xil
∣∣∣
x(m)

=
∂lg

∂xi1 · · · ∂xil
∣∣∣
x(m)

for all l ≤ k and all indices 1 ≤ i1, . . . , il ≤ n, then these equalities hold in any other
coordinate system.

Exercise 3.2 (Dimension of jet manifolds). Let F → M be a smooth fiber bundle
with dimF = p+ q and dimM = p. Compute the dimension of JkF .

Exercise 3.3 (Jet bundles of vector bundles). Let A→M and B →M be smooth
vector bundles. Show the following:

(a) JkA→M and JkB →M are vector bundles.
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(b) Jk(A⊕B) ∼= JkA⊕ JkB

Exercise 3.4 (Cartan distribution). Let F → M be a smooth fiber bundle. The
Cartan distribution Ck ⊂ T (JkF ) is spanned at every point jkmφ ∈ JkF by the
tangent vectors of the form ξ = Tm(j

kψ) vm for all vm ∈ TmM and all local sections
ψ with jkmψ = jkmφ.

(a) Show that Ck is regular.

(b) Compute the rank of Ck.

(c) Show that Ck is not integrable.

Exercise 3.5 (Non-local maps). Show that none of the three maps f , g, and h of
Exercise 9 factors through a finite jet manifold of the bundle M × R→M .

Exercise 3.6 (Derivations are local). Let C∞(M) denote the ring of smooth func-
tions on a manifold M . Show that every derivation δ : C∞(M)→ C∞(M) is local.

Exercise 3.7 (Gauge transformations and diffeomorphisms). Let F = R×T ∗M →
M so that F = C∞(M) × Ω1(M). Let F ′ := T ∗M → M . Show that the map
f : F → F′ defined by

f(φ, ω) = ω + dφ

is local. (The map f is called the action of local gauge transformations.) Let
F = TM ×M ∧kT ∗M → M and F ′ = ∧kT ∗M , so that F = X(M) × Ωk(M). Show
that the map f : F → F′ defined by

f(v, ω) = Lvω ,

where Lv denotes the Lie derivative with respect to v, is local.

Exercise 3.8 (Jacobi fields). Let F = R×Rn → R =M be the trivial bundle. Let
Γαβγ : Rn → R be a family of smooth functions indexed by 1 ≤ α, β, γ ≤ n that is
symmetric in the lower indices Γαβγ = Γαγβ. Consider the map of fields

D : C∞(R,Rn) −→ C∞(R,Rn)

q 7−→ q̈α + Γαβγ(q)q̇
β q̇γ .

Let its zero locus D−1(0) ⊂ C∞(R,Rn) be equipped with the subspace diffeology.
Show that D is local. Compute the tangent map of D. Show that every tangent
vector in TD−1(0) is in the kernel of TD. Is every element of the kernel of TqD for
q ∈ D−1(0) an element of TD−1(0)? (When the Γαβγ are the connection coefficients
of the Levi-Civita connection of a riemannian metric on Q = Rn, then D(q) = 0 is
the geodesic equation. The elements in the kernel of TD are called Jacobi fields.
They describe the tidal forces of the gravitational field.)
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Pro-manifolds

4.1 Ind-categories and pro-categories

4.1.1 Filtered and cofiltered categories

The guiding example of the infinite jet bundle suggests that we consider limits of
diagrams of the form

J0F ←− J1F ←− J2F ←− . . .

It turns out that it is conceptually easier to first consider the dual situation of
colimits of sequential diagrams

C0 −→ C1 −→ C2 −→ . . . ,

that is, diagrams ω → C indexed by the smallest transfinite ordinal

ω = (0→ 1→ 2→ . . .) .

Example 4.1.1. Let C be the partially ordered set (R,≤), viewed as category. A
functor x : ω → C is an increasing sequence x0 ≤ x1 ≤ x2 ≤ . . . of real numbers.
The functor x has a colimit y ∈ R if and only if the sequence of numbers converges
to y (Exercise 4.4).

Even if we are primarily interested in diagrams indexed by ω, many categorical
constructions involving ω-diagrams will produce diagrams of different shapes. The
analogy of Example 4.1.1 also suggests that we may have to consider more gen-
eral index categories. While every continuous map preserves limits of convergent
sequences, the converse is true only if the domain of the map is a first countable
topological space. In spaces that are not first countable, we have to consider the
convergence of filters instead of sequences. A filter is a family of open subsets of a
topological space that is closed under finite intersections. This concept is generalized
by filtered categories.

Definition 4.1.2. A category I is filtered if the following three properties are
satisfied:

(i) I is not empty.
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(ii) For any two objects i1, i2 ∈ I, there is a diagram,

i1

i

i2

(iii) For any two parallel morphisms f : i1 → i2 and g : i1 → i2, there is a diagram

i1 i2 i
f

g

h

such that hf = hg.

Example 4.1.3. Let U be a filter of a topological space X, that is, a non-empty
collection of open subsets such that for every pair U, V ∈ U, U ∩V is also contained
in U. We can view U as a full subcategory of Open(X)op. By definition, U is non-
empty, so that (i) is satisfied. Any two elements U1, U2 ∈ U contain U1 ∩ U2, which
is property (ii) of Definition 4.1.2. Since the morphism between any two U1 and U2,
that is, the inclusion U1 ⊂ U2 is unique, two parallel morphisms are always equal,
so that we can choose the morphism h of (iii) to be the identity. We conclude that
U is a filtered category.

Proposition 4.1.4. A category I is filtered if and only if every finite diagram D :
J→ I has a cocone.

Proof. A proof is given in the appendix (Proposition A.0.2).

Definition 4.1.5. A category I is cofiltered if Iop is filtered.

Definition 4.1.6. The colimit (limit) of a diagram D : I → C is called filtered
(cofiltered), when I is.

Example 4.1.7. The sequence

R0 −→ R1 −→ R2 −→ . . .

of inclusions Rn ↪→ Rn ⊕R ∼= Rn+1 is a filtered diagram. Its colimit is
⊕∞

n=0R, the
R-vector space of countably infinite dimension, the elements of which are finite but
arbitrarily long sequences of real numbers.

Example 4.1.8. The sequence

R0 ←− R1 ←− R2 ←− . . .

of the projections Rn+1 ∼= Rn×R→ Rn is a cofiltered diagram. Its limit is
∏∞

n=0R,
the countably infinite product of R, the elements of which are infinite sequences of
real numbers.
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Example 4.1.9. Let F : Open(M)op → Set be a presheaf on the topological space
M . Let Um ⊂ Open(M) be the subcategory of open sets containing the point
m ∈ M . (This is called the neighborhood filter of m.) The colimit of the functor
Uop
m ↪→ Open(M)op → Set,

Fm := colim
U∈Um

F(U) ,

is the stalk atm, that is, the set of germs atm. (Recall that two elements φ ∈ F(U),
φ′ ∈ F(U ′) have the same germ at m if they have the same restriction to some open
neighborhood of m.)

Let Φ : I → J and X : J → C be functors. If the colimit of X exists, the maps
to (X ◦Φ)i = XΦ(i) → colimX are a cocone of the diagram X ◦Φ. So if the colimit
of X ◦Φ exists as well, the cocone induces, by the universal property of the colimit,
a unique morphism

colim(X ◦ Φ) −→ colimX . (4.1)

Definition 4.1.10. A functor Φ : I→ J is final if for every functor X : J→ C for
which colim(X ◦Φ) exists, colimX exists and the morphism (4.1) is an isomorphism.

The following proposition gives a more explicit equivalent characterization of final
functors, which is often used as definition. Recall that a category is connected if
every two objects are connected by a finite zigzag of arrows.

Proposition 4.1.11. A functor Φ : I → J is final if and only if for every object
j ∈ J the comma category j ↓Φ is non-empty and connected.

Proof. See Theorem 1 and Exercise 5 in Section IX.3 of [ML98].

Example 4.1.12. Let I = ω = J and Φ : ω → ω be a functor such that the sequence
(Φ(0),Φ(1), . . .) is unbounded. Then for every j in the target, there is some i such
that j ≤ Φ(i), which shows that j ↓Φ is non-empty. Moreover, if j ≤ Φ(i′) then
either Φ(i) ≤ Φ(i′) or Φ(i′) ≤ Φ(i), so that j ↓Φ is connected. We conclude by
Proposition 4.1.11 that Φ is final.

Example 4.1.13. Let I = ω and J = ω × ω. The diagonal functor Φ : ω → ω × ω,
i → (i, i) is final. In order to see this, observe that there is a morphism in ω from
(i, j) to (i′, j′) if and only if i ≤ i′ and j ≤ j′. We can then argue as in the last
example to show that Φ is final.

Definition 4.1.14. A functor Φ : I → J is initial if for every functor X : J → C

for which lim(X ◦ Φ) exists, limX also exists, and the natural morphism

limX −→ lim(X ◦ Φ)

is an isomorphism.

Proposition 4.1.15. A functor Φ : I → J is initial if and only if for every object
j ∈ J the comma category Φ ↓ j is non-empty and connected.

Proof. The proposition is dual to Proposition 4.1.11.
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Terminology 4.1.16. Final functors are sometimes called “cofinal” and initial func-
tors are sometimes called “co-cofinal”, e.g. in [KS06]. This can be quite confusing,
since “cofinal” is sometimes also used as synonym for “initial” in the sense used
here. We will generally adhere to the terminology of [ML98]. And besides, in cate-
gory theory “coco-x” should always mean the same as “x”, which is why there is no
category theoretical difference between a coconut and a nut.

Let I and J be index categories and X : I× J→ C a functor to a complete and
cocomplete category. The morphisms of the limit cone

lim
j∈J

X(i, j) −→ X(i, j)

are natural in i, so they induce a morphism of the colimits over i,

colim
i∈I

lim
j∈J

X(i, j) −→ colim
i∈I

X(i, j) .

These morphisms form a cone over the diagram j 7→ X(i, j), so by the universal
property of the limit this induces a unique morphism

colim
i∈I

lim
j∈J

X(i, j) −→ lim
j∈J

colim
i∈I

X(i, j) . (4.2)

Definition 4.1.17. Let X : I× J→ C be a functor to a complete and cocomplete
category. If the morphism (4.2) is an isomorphism then the limit and colimit are
said to commute.

Proposition 4.1.18. Let I be a small category. The following are equivalent:

(i) I is filtered.

(ii) For any finite category J and any functor X : I × J → Set the colimit over I

and the limit over J commute.

Proof. See Theorem 3.1.6 in [KS06]. Cf. also Theorem 1 in Section IX.2 of [ML98].

Proposition 4.1.19. Let I be a small category. The following are equivalent:

(i) I is cofiltered.

(ii) For any finite category J and any functor X : I × J → Set, the limit over I

and the colimit over J commute.

Corollary 4.1.20. Filtered colimits and small limits preserve monomorphisms. Du-
ally, small colimits and cofiltered limits preserve epimorphisms.

Proof. A morphisms f : S → T is a monomorphism if and only

S S

S T

id

id

f

f
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is a pullback diagram, which is a finite limit diagram. Since, by Proposition 4.1.19,
filtered colimits commute with finite limits, filtered colimits preserve monomor-
phisms. Since limits commute with limits, limits preserve monomorphisms, as
well.

In short, Proposition 4.1.18 states that filtered colimits commute with finite
limits. Dually, Proposition 4.1.19 states that cofiltered limits commute with finite
colimits. This is perhaps the most important feature of filtered categories. For more
on commuting classes of limits and colimits see [BJLS15].

4.1.2 Definition of ind/pro-categories

Definition 4.1.21. A presheaf is called ind-representable if it is isomorphic to a
filtered colimit of representable presheaves.

Let us spell out this definition. A presheaf X̂ ∈ SetC
op

is ind-representable if
X̂ ∼= colimi∈IYC(Xi) for some functor X : I→ C defined on a small filtered category
I.

Definition 4.1.22 (I.8.2 in [Art72]). Let C be a category. The ind-category
Ind(C) ≡ IndC is the full subcategory of SetC

op

of ind-representable presheaves.

Let I : Ind(C) → SetC
op

denote the inclusion of ind-objects into the category of
presheaves. Being ind-representable is a property of a presheaf, so that I is injective.
By definition, a morphism of ind-objects is a morphism of presheaves, so that I is
full and faithful. Since a representable presheaf is a fortiori ind-representable, the
Yoneda embedding YC : Ind(C) → SetC

op

takes its values in the image of I, so that
we have a commutative diagram

SetC
op

C Ind(C)

YC

yC

I

where yC is the Yoneda embedding with restricted codomain. (When the category
C is clear from the context, we will drop the index.) The presheaf yCC is given by
(yCC)(A) = (YCC)(A) = C(A,C) for all A ∈ C. Since YC and I are both full and
faithful, so is the functor yC : C→ Ind(C).

The concept dual to ind-categories is that of pro-categories. For the pro-category,
we want to enlarge C by cofiltered limits. Let X : I → C be a cofiltered diagram.
Then Xop : Iop → Cop is a filtered diagram. The limit of X is the colimit of Xop.
So in order to add the limit of X to C we first embed Cop in its presheaf category
by the Yoneda embedding,

YCop : Cop −→ Set(C
op)op ∼= SetC .

An object in SetC is called a copresheaf on C. The Yoneda embedding of C ∈ Cop

is given explicitly by (
YCop(C)

)
(A) = Cop(A,C) = C(C,A)
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for all A ∈ C. The functor C(C, ) : C→ Set is called a representable copresheaf
or the copresheaf represented by C. Now we can take the colimit of YCopXop :
Iop → SetC or, equivalently, the limit of Yop

CopX : I→ (SetC)op.

Definition 4.1.23. A copresheaf X̌ ∈ SetC is pro-representable if there is a
cofiltered diagram X : I→ C such that X̌ is isomorphic to the limit of the cofiltered
diagram Yop

CopX : I→ (SetC)op.

Definition 4.1.24. Let C be a category. The pro-category Pro(C) ≡ ProC is the
full subcategory of pro-representable copresheaves in (SetC)op.

Proposition 4.1.25. There is an isomorphism of categories Pro(C) ∼=
(
Ind(Cop)

)op
.

Proof. The isomorphism follows directly from the definition.

Remark 4.1.26. Proposition 4.1.25 is sometimes taken as definition of pro-catego-
ries, e.g. In I.8.10 of [Art72].

Terminology 4.1.27. The prefixes “ind” and “pro” derive from the historic names
“inductive limit” for colimit and “projective limit” for limit. By abuse of language,
an object X̂ ∈ IndC is called an ind-object of C, even though it is not an object
of C. Analogously, X̌ ∈ ProC is called a pro-object of C. When the objects in
the category are named, “ind” and “pro” are added as prefixes. For example, a
pro-object of the category of finite groups is called a pro-finite group, a pro-object
of manifolds a pro-manifold, etc.

Lemma 4.1.28. Let X̂ := colimi∈IYC(Xi) and Ŷ := colimj∈J YC(Yj) be presheaves
on C represented by the diagrams X : I→ C and Y : J→ C. Then there is a natural
bijection

SetC
op

(X̂, Ŷ ) ∼= lim
i∈I

colim
j∈J

C(Xi, Yj) .

Proof. We have the natural isomorphisms

SetC
op

(X̂, Ŷ ) ∼= SetC
op

(colim
i∈I

YC(Xi), Ŷ )

∼= lim
i∈I

SetC
op

(YC(Xi), Ŷ )

∼= lim
i∈I

Ŷ (Xi)

= lim
i∈I

(
colim
j∈J

YC(Yj)
)
(Xi)

= lim
i∈I

colim
j∈J

(
YC(Yj)(Xi)

)
= lim

i∈I
colim
j∈J

C(Xi, Yj) .

In the first step we have used the colimit representation of X̂, in the second step
the universal property of colimits, in the third step the Yoneda lemma, in the fourth
step the colimit representation of Ŷ , in the fifth step that colimits of presheaves are
computed point-wise, and in the last step the definition of the Yoneda embedding.
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Proposition 4.1.29. Let C be a category. Let X̂, Ŷ ∈ IndC be represented by the
filtered diagrams X : I→ C and Y : J→ C. Then there is a natural isomorphism

IndC(X̂, Ŷ ) ∼= lim
i∈I

colim
j∈J

C(Xi, Yj) . (4.3)

Proof. IndC is defined to be a full subcategory of SetC
op

, which means that

IndC(X̂, Ŷ ) = SetC
op

(X̂, Ŷ ) .

The proposition now follows from Lemma 4.1.28.

Corollary 4.1.30. Let C be a category. Let X̌, Y̌ ∈ ProC be represented by the
cofiltered diagrams X : I→ C and Y : J→ C. There is a natural isomorphism

ProC(X̌, Y̌ ) ∼= lim
j∈J

colim
i∈I

C(Xi, Yj) . (4.4)

Proof. Using Proposition 4.1.25 and Proposition 4.1.29, we can express the hom-set
in ProC as

ProC(X̌, Y̌ ) ∼= Ind(Cop)op(X̌, Y̌ )

∼= Ind(Cop)(Y̌ , X̌)
∼= lim

j∈J
colim
i∈I

Cop(Yj, Xi)

∼= lim
j∈J

colim
i∈I

C(Xi, Yj) ,

which proves the corollary.

4.1.3 Functoriality and naturality of the ind/pro-extension

Let F : C→ D be a functor. Since SetD
op

is cocomplete, the functor YDF has a left
Kan extension along the Yoneda embedding of C,

F̂ := LanYC(YDF ) : Set
Cop −→ SetD

op

,

which we will call the Yoneda extension of F . It is given pointwise on X̂ ∈ SetC
op

by the colimit

F̂ X̂ = colim
YCC→X̂

YD(FC) .

By the Yoneda lemma, YC is full and faithful. It follows that the diagram

C D

SetC
op

SetD
op

F

YC YD

F̂

commutes. The left Kan extension of any functor along the Yoneda embedding
preserves all small colimits (Proposition A.0.1). Let G : D→ E be another functor.
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It follows from the continuity of F̂ that

ĜF̂ (X̂) = Ĝ
(
colim
YCC→X̂

YD(FC)
)

∼= colim
YCC→X̂

ĜYD(FC)

∼= colim
YCC→X̂

YEGF (C)

∼= (LanYC YEGF )X̂

∼= ĜF (X̂) .

This shows that the Yoneda extension preserves the composition of functors. The
left Kan extension LanYC F is natural in F . That is, if τ : F → F ′ is a natural
transformation of functors F, F ′ : C → D, then there is a natural transformation
τ̂ : F̂ → F̂ ′. The upshot is that the maps C 7→ SetC

op

, F 7→ F̂ , and τ 7→ τ̂ defined an
endofunctor of the 2-category of categories, functors, and natural transformations.

Proposition 4.1.31. The Yoneda extension of a functor F : C → D restricts to a
functor of ind-categories

Ind(F ) : Ind(C) −→ Ind(D) .

Proof. Let X̂ ∈ SetC
op

be an ind-object represented by X : I→ C. Since F̂ preserves
colimits, we have

F̂ X̂ = F̂
(
colim
i∈I

YC(Xi)
)

∼= colim
i∈I

F̂YC(Xi)

= colim
i∈I

YD(FXi) .

This shows that F̂ X̂ is an ind-object represented by FX : I→ D.

Corollary 4.1.32. The Yoneda extensions of functors F : C→ D and G : C→ Dop

restrict to functors
Pro(F ) : Pro(C) −→ Pro(D)

Ind(G) : Ind(C) −→ Pro(D)op

Pro(G) : Pro(C) −→ Ind(D)op .

where Pro(F ) := Ind(F op)op and Pro(G) := Ind(Gop)op.

Proposition 4.1.33. Mapping a category to its ind-category extends to an end-
ofunctor Ind : Cat → Cat of the 2-category of categories, functors, and natural
transformations. The same is true for pro-categories.

Proof. We have already explained, that the map from categories to presheaves is
a 2-functor Cat → Cat. Ind(F ) is the point-wise restriction to ind-objects X̂,
Ind(F )X̂ = F̂ X̂. It follows that

Ind(GF )X̂ = ĜF (X̂)

∼= ĜF̂ (X̂)

= Ĝ(Ind(F )X̂)

= Ind(G) Ind(F )X̂ .
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An analogous argument applies to natural transformations. This shows that Ind is a
2-functor. The dual statement for pro-categories follows from Proposition 4.1.25.

Example 4.1.34. Consider the sequence of vector spaces R0 → R1 → . . . from
Example 4.1.7, which represents an ind-object of the category of finite-dimensional
vector spaces. The composition with the dual yields the sequence (R0)∗ ← (R1)∗ ←
. . ., which represents a pro-object of finite-dimensional vector spaces. Taking the
dual again, we get back the ind-object we started with.

The reflexivity of ind/pro-finite dimensional vector spaces is one of the advan-
tages of working in ind- and pro-categories. Taking the algebraic dual of an infinite
dimensional vector space always raises the cardinality of the dimension. For exam-
ple, the dual of the colimit of the sequence R0 → R1 → . . . is (

∐∞
n=0R)∗ ∼=

∏∞
n=0R∗,

which is the limit of the sequence (R0)∗ ← (R1)∗ ← . . .. But taking the dual again,
yields a vector space of the unwieldy dimension 2(2

ℵ0 ). Adding a Banach structure
and taking bounded duals can make an infinite dimensional vector space reflexive.
But when we only have a Fréchet structure, as in the example of smooth sections of
a vector bundle, we are out of luck: The dual of a Fréchet space is again a Fréchet
space if and only if it was a Banach space to begin with.

Proposition 4.1.35. For any two categories C and D, there are natural equivalences

Ind(C×D) ≃ Ind(C)× Ind(D)

Pro(C×D) ≃ Pro(C)× Pro(D) .

Proof. Let (X̂, Ŷ ) ∈ Ind(C) × Ind(D) be a pair of ind-objects represented by dia-
grams X : I→ C and Y : J→ D. It is straight-forward to show that the product of
two filtered categories is filtered (Proposition 3.2.1 (iii) in [KS06]). Therefore, the
product functor X × Y : I× J→ C×D represents an ind-object of C×D. We thus
obtain a map

Ind(C)× Ind(D) −→ Ind(C×D) . (4.5)

Because the product of functors X × Y is natural in both the domain and the
target, the map (4.5) is a functor. And since the Yoneda embedding commutes with
products, this functor is full and faithful.

Consider an object Ẑ in Ind(C × D) represented by a functor Z : I → C × D,
i 7→ Xi × Yi, where X : I → C and Y : I → D are the two components of Z. Since
the diagonal functor ∆ : I→ I× I is final (Exercise 4.2), X×Y : I× I→ C×D and
Z represent isomorphic ind-objects. This shows that the fully faithful functor (4.5)
is essentially surjective, so it is an equivalence of categories.

There is an isomorphism (C ×D)op ∼= Cop ×Dop for any pair of categories. We
thus obtain

Pro(C×D) ∼=
(
Ind
(
(C×D)op)

))op
∼=
(
Ind(Cop ×Dop)

)op
≃
(
Ind(Cop)× Ind(Dop)

)op
∼= Ind(Cop)op × Ind(Dop)op

∼= Pro(C)× Pro(D) ,

which finishes the proof.
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4.1.4 Finite limits and colimits in ind/pro-categories

Even finite limits and colimits in ind/pro-categories can be difficult to compute.
Matters become easier if for a diagram D̂ : A→ IndC the objects D̂(a) ∈ IndC can
be represented by diagramsD(a) : I→ C indexed by the same filtered category I and
the morphisms of the diagram are all represented by natural transformationsD(a)→
D(b). Such a D is called a level-representation of D̂. If a level-representation
of D̂ exists, then its limit and colimit can be computed level-wise, which is the
statement of the following result, first proved in [AM69].

Proposition 4.1.36. Let I be a small filtered category. Then the functor

CI −→ IndC

X 7−→ colim
i∈I

YC(Xi)
(4.6)

commutes with finite limits and finite colimits.

Proof. Let D : A → CI, a 7→ D(a) be a diagram indexed by a finite category
A. Assume that the colimit of D exists. Since colimits in functor categories are
computed point-wise, this means that the colimit of the functor A→ C, a 7→ D(a)i
exists for all i ∈ I.

Let us denote the functor (4.6) by F . The image of this diagram under F is

FD : A −→ IndC

a 7−→ colim
i∈I

YC

(
D(a)i

)
.

Let Ŷ ∈ IndC be represented by the filtered diagram Y : J → C. We have the
natural bijections

IndC(colim
a∈A

FD(a), Ŷ ) ∼= lim
a∈A

IndC(FD(a), Ŷ )

∼= lim
a∈A

lim
i∈I

colim
j∈J

C(D(a)i, Yj)

∼= lim
i∈I

lim
a∈A

colim
j∈J

C(D(a)i, Yj)

∼= lim
i∈I

colim
j∈J

lim
a∈A

C(D(a)i, Yj)

∼= lim
i∈I

colim
j∈J

C(colim
a∈A

D(a)i, Yj)

∼= IndC
(
F (colim

a∈A
D(a)), Ŷ

)
,

where we have used the universal property of the colimit of FD, the commutativity
of limits, formula (4.3) for the morphisms in an ind-category, the commutativity of
finite limits with filtered colimits stated in Proposition 4.1.18, the universal property
of the colimit of the functor D( )i : A → C, and formula (4.3) again. Since this
bijection holds for all Ŷ , we conclude that F commutes with the colimits over A.
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Assume now that the limit of D exists. Then we have the natural bijections

IndC(Ŷ , lim
a∈A

FD(a)) ∼= lim
a∈A

IndC(Ŷ , FD(a))

∼= lim
a∈A

lim
j∈J

colim
i∈I

C(Yj, D(a)i)

∼= lim
j∈J

lim
a∈A

colim
i∈I

C(Yj, D(a)i)

∼= lim
j∈J

colim
i∈I

lim
a∈A

C(Yj, D(a)i)

∼= lim
j∈J

colim
i∈I

C(Yj, lim
a∈A

D(a)i)

∼= IndC
(
Ŷ , F (lim

a∈A
D(a))

)
,

which shows that F commutes with the limits over A.

Example 4.1.37. Let X̂, Ŷ be ind-objects in a category C with finite products,
that are represented by the filtered diagrams X, Y : I→ C. Then the product X̂× Ŷ
exists and is represented by I→ C, i 7→ Xi × Yi.

Remark 4.1.38. The map CI → IndC does in general not commute with infinite
limits or colimits. In fact, it does not even commute with filtered colimits, even
though IndC is a cocompletion of C by filtered colimits (see Example 4.2.5).

A finite diagram D̂ can fail to have a level-representation only if A has “loops”,
that is, no non-trivial endomorphisms [Isa02]. For example, a level-representation
exists for every diagram consisting of a finite number of ind-objects without mor-
phisms between them or for every diagram consisting of a pair of parallel morphisms
between a pair of ind-objects [KS06, Cor. 6.3.15]. Since the (co)limits of such dia-
grams are (co)products and (co)equalizers, Proposition 4.1.36 implies that all finite
(co)products and (co)equalizers exist in IndC if they exist in C. Since every finite
(co)limit can be obtained by a (co)equalizer of a finite (co)product we arrive at the
following proposition.

Proposition 4.1.39. If C has all finite coproducts, coequalizers, colimits, products,
equalizers, or limits then so does IndC.

This result can be slightly improved. In Proposition 6.1.18 of [KS06] it is shown
that having finite coproducts in C implies that IndC has small coproducts. As
a consequence, if C has finite colimits, then IndC has small colimits. For later
reference, we state the dual of Proposition 4.1.36 for pro-categories.

Proposition 4.1.40. Let I be a small cofiltered category. Then the functor

CI −→ ProC

X 7−→ lim
i∈I

Yop
Cop(Xi)

(4.7)

commutes with finite limits and finite colimits.

Proof. This follows from Proposition 4.1.36 by Proposition 4.1.25. The statement
was first proved in Proposition 4.1, Appendix A of [AM69].
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4.1.5 Ind/pro-objects versus colimits/limits

One of the main reasons to introduce the ind-category IndC was to enlarge C by
filtered colimits. What happens if the filtered colimits already exist? Let X̂ and Ŷ
be represented by filtered diagrams X : I → C and Y : J → C. Assume that the
colimits of X and Y exist in C. From the universal property of the colimit of Y , we
obtain a natural map

colim
j∈J

C(Xi, Yj) −→ C(Xi, colim
j′∈J

Yj′) ,

for all Xi. Taking the limit over i, we obtain the map

lim
i∈I

colim
j∈J

C(Xi, Yj) −→ lim
i∈I

C(Xi, colim
j′∈J

Yj′) . (4.8)

The domain of this map is IndC(X̂, Ŷ ). The codomain can be written as

lim
i∈I

C(Xi, colim
j∈J

Yj) ∼= C(colim
i∈I

Xi, colim
j∈J

Yj) .

With this, we obtain from (4.8) the natural map

IndC(X̂, Ŷ ) −→ C(colim
i∈I

Xi, colim
j∈J

Yj) . (4.9)

This map is generally neither injective not surjective. It is injective under the
following condition on ind-objects, which is satisfied in many applications.

Proposition 4.1.41. Let X̂, Ŷ ∈ IndC be represented by the diagrams X : I → C

and Y : J → C that have colimits in C. Assume that all arrows of the diagrams X
and Y are monomorphisms. Then the map (4.9) is injective.

Proof. By Corollary 4.1.20, monomorphisms commute with filtered colimits. There-
fore, the morphisms of the colimit cone

Yj −→ colim
j′∈J

Yj′

are all monomorphisms. It follows that the induced morphisms

C(Xi, Yj) −→ C(Xi, colim
j′∈J

Yj′)

are monomorphisms for all Xi ∈ C. Using again that monomorphisms commute
with filtered colimits, we infer that

colim
j∈J

C(Xi, Yj) −→ C(Xi, colim
j∈J

Yj)

is a monomorphism. Similarly, monomorphisms commute with limits. Therefore,

lim
i∈I

colim
j∈J

C(Xi, Yj) −→ lim
i∈I

C(Xi, colim
j∈J

Yj) ∼= C(colim
i∈I

Xi, colim
j∈J

Yj)

is a monomorphism. By Equation (4.3), we conclude that (4.9) is an injective
map.
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Definition 4.1.42. An ind-object (pro-object) in C is called strict if it is repre-
sented by a diagram in which every arrow is a monomorphism (epimorphism).

Remark 4.1.43. Proposition 4.1.41 states that a morphism X̂ → Ŷ of strict ind-
objects can be identified with a morphism colimX → colimY of the colimits (if
they exist) of the representing diagrams. However, the map (4.9) is generally not
surjective. This means that there may be morphisms of the colimits that do not
come from morphisms of the ind-objects. The upshot is that even if all cofiltered
limits in C exist, the objects in IndC have a richer structure and, consequently, fewer
morphisms than the colimits in C (see Example 4.1.57 and Example 4.2.5).

Warning 4.1.44. The historic notation in [Art72] for an ind-object X̂ represented
by the diagram X : I → C is lim−→X (lim−→ is a notation for the colimit). In this
notation, the colimit must be taken in the category of presheaves on C, since it is
generally different from the colimit in C. To avoid this notational trap, some authors
write “ lim−→ ”X [KS06].

If C has already all filtered colimits, we can try to define a functor Ind(C) → C

that sends an ind-object X̂ represented by the functor X : I→ C to the colimit

X̄ := colim
i∈I

Xi .

We have to check that this is well defined, that is, up to isomorphism X̄ does not
depend on the choice of the representing diagram. For every C ∈ C, we have the
isomorphisms

C(colim
i∈I

Xi, C) ∼= lim
i∈I

C(Xi, C)

∼= lim
i∈I

SetC
op(

YC(Xi),YC(C)
)

∼= IndC(X̂, yC) .

It follows that if Y : J→ C is another diagram representing X̂, then

C(colim
j∈J

Yj, C) ∼= C(colim
i∈I

Xi, C)

for all C ∈ C. This implies that colimj∈J Yj ∼= colimi∈IXi. By choosing the colimits,

we obtain a well-defined functor IndC→ C, X̂ → X̄. It follows from the construction
that

yC ∼= C .

For more details, see [KS06, Prop. 6.3.1].

Definition 4.1.45. An object C ∈ C is compact or finitely presented if for every
colimit of a filtered diagram D : I→ C the natural morphism

colim
i∈I

C(C,Di) −→ C(C, colim
i∈I

Di)

is an isomorphism.
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Let X : I→ C be a filtered diagram that has a colimit X̄. Let C ∈ C be compact.
Then

C(C, X̄) ∼= C(C, colim
i∈I

Xi)

∼= colim
i∈I

C(C,Xi)

∼= IndC(yC, X̂) ,

where X̂ is the ind-object represented by X. We conclude that morphisms from
a compact object into a filtered colimit can be identified with morphisms of the
ind-objects. If C is not compact, this is generally not true (Example 4.2.5).

4.1.6 Concrete structures

Recall from Terminology 2.1.6 that a faithful functor U : C → Set is called a
concrete structure on C. There may be different concrete structures on the same
category (see Remark 4.1.47). In many categories the objects are by definition sets
with additional structure, such as groups, rings, algebras, vector spaces, topological
spaces, manifolds, etc. In that case, there is the obvious forgetful functor that
discards the additional structure.

Proposition 4.1.46. Let U : C → Set be a concrete category. Then its left Kan
extension to IndC,

Û := LanC→IndC U : IndC −→ Set ,

is a concrete structure.

Proof. Let X̂, Ŷ ∈ IndC be represented by diagrams X : I → C and Y : J → C,
defined on filtered categories I and J. First, we observe that the Kan extension of
the forgetful functor is given by ÛX̂ = colimi∈I UXi. It follows that

Set(ÛX̂, Û Ŷ ) ∼= lim
i∈I

colim
j∈J

Set(UXi, UYj) . (4.10)

Since U is faithful, the forgetful map C(Xi, Yj) → Set(UXi, UYj) is injective for all
i ∈ I, j ∈ J. By Corollary 4.1.20 filtered colimits preserve monomorphisms. It
follows that the forgetful map

colim
j∈J

C(Xi, Yj) −→ colim
j∈J

Set(UXi, UYj) (4.11)

is a monomorphism. By Corollary 4.1.20 small limits preserve monomorphisms. It
follows that the map

lim
i∈I

colim
j∈J

C(Xi, Yj) −→ lim
i∈I

colim
j∈J

Set(UXi, UYj) (4.12)

is a monomorphism. Using the isomorphisms (4.3) and (4.10), we conclude that the
map

IndC(X̂, Ŷ ) −→ Set(ÛX̂, Û Ŷ )

is a monomorphism as well. In other words, Û is faithful.
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Remark 4.1.47. The category of presheaves on any category C is concrete with the
forgetful functor X̂ 7→

⊔
C∈C X̂(C). But this functor is quite different from the one

of Proposition 4.1.46.

Corollary 4.1.48. Let U : C → Set be a concrete structure. The its right Kan
extension to ProC,

Ǔ := RanC→ProC U : ProC −→ Set ,

is a concrete structure.

Proof. The proof follows from Proposition 4.1.25.

Corollary 4.1.48 states that if C is a concrete category then there is a faithful
functor Ǔ on ProC such that for every X̌ ∈ ProC represented by X : I→ C we have

ǓX̌ = lim
i∈I

UXi .

In many categories the forgetful functor is the functor of morphisms

U(C) = C(S,C)

out of a test object S. Such a U is called the functor of S-points. The Kan
extension of U is now given by

ǓX̌ ∼= ProC
(
Yop
CopS, X̌

)
,

where we have used formula (4.4) for the hom-sets in Pro(C). This shows that Ǔ
is also the functor of S-points, where we identify S with the presheaf it represents.
In the category of vector spaces, the test object is S = R. In geometric categories,
such as topological spaces and smooth manifolds, the test object is typically the
terminal object S = ∗. Since the Yoneda embedding commutes with limits, YC(∗)
is the terminal object in IndC, which implies that Yop

Cop(∗) is the terminal object in
Pro(C).

Notation 4.1.49. Having convinced ourselves that a concrete structure on C ex-
tends to concrete structures on both, Ind(C) and Pro(C), we will return to the lighter
and more intuitive notation UC ≡ |C|, ÛX̂ = |X̂|, and ǓX̌ ≡ |X̌|.

The upshot is that if the functor of points C 7→ |C| := C(∗, C) is a concrete
structure on C, then so is the functor of points for ind-objects and pro-objects. If
X̌ ∈ ProC is pro-represented by the diagram X : I −→ C then

|X̌| := ProC(∗, X̌) ∼= lim
i∈I
|Xi| . (4.13)

4.1.7 Tensor products, algebras, derivations

The tensor product of vector spaces is an example for a closed symmetric monoidal
structure. We recall that a monoidal structure on a category C consists of a
functor ⊗ : C× C→ C, called the tensor product and an object 1 ∈ C, called the
tensor unit, that equip C with a weakly associative and unital multiplication. That
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means that there are natural isomorphisms aA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C),
lA : 1⊗A→ A and rA : A⊗ 1→ A satisfying certain coherence axioms. The tensor
product is called symmetric if there is a natural isomorphism τA,B : A⊗B → B⊗A
with τA,B ◦ τB,A = idA⊗B, satisfying additional coherence axioms involving a, l, and
r. A monoidal category is called closed if for every B ∈ C the functor ⊗B : A 7→
A⊗B has a right adjoint C 7→ Hom(B,C), i.e. there is a natural isomorphism

C(A⊗B,C) ∼= C
(
A,Hom(B,C)

)
.

For the full definition of closed symmetric monoidal categories see for example
Ch. VII in [ML98] or Section 1 in [Kel05].

Terminology 4.1.50. The object Hom(A,B) is called the internal or inner hom-
object. It is also denoted by [A,B] or AB.

Example 4.1.51. The category V = Vec with the tensor product ⊗ of real vector
spaces, the tensor unit 1 = R, and the usual vector space of linear maps Hom(V,W )
is a closed symmetric monoidal category.

By Proposition 4.1.31 the functor ⊗ induces a functor Ind(⊗) on Ind(C × C).
Composing this functor with the equivalence of Proposition 4.1.35, we obtain a
functor

⊗̂ : Ind(C)× Ind(C)
∼=−→ Ind(C× C)

Ind(⊗)−−−−→ Ind(C) , (4.14)

which maps ind-objects Â, B̂ represented by diagrams A : I→ C and B : J→ C to
the ind-object represented by I× J→ C, (i, j) 7→ Ai ⊗Bj.

Proposition 4.1.52. Let (C,⊗, 1) be a monoidal category. Then the functor ⊗̂ of
Equation (4.14) and the object 1̂ := YC(1) ∈ IndC are a monoidal structure on IndC.

Proof. The associativity of ⊗̂ follows from the associativity of ⊗ and of the product
in categories. Since 1̂ is represented by the constant diagram 1 : ∗ → C, it follows
that 1̂ ⊗̂ X̂ is represented by the diagram I ∼= ∗× I→ C, i 7→ 1⊗Xi

∼= Xi, which is
again X.

Remark 4.1.53. Equation (4.14) is an example for theDay convolution product
of functors on a monoidal category [Day70].

A special case for a monoidal structure is the biproduct ⊕ of an additive category
such as Vec. In fact, it can be shown that not only the biproduct, but the entire
structure of an abelian category extends to the ind-category.

Proposition 4.1.54 (Thm. 8.6.5 in [KS06]). Let C be an abelian category, then
IndC is an abelian category and the embedding C→ IndC is exact.

When we have a tensor product on a category, we can define many algebraic
structures internal to this category. In fact, any algebraic structure that is given by
an operad or a prop can be generalized to any monoidal category. For example a
monoid internal to (C,⊗, 1) consists of an object A ∈ C, a multiplication morphism
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µ : A ⊗ A → A, and a unit morphism e : 1 → A, such that the following diagrams
commute:

A⊗ A⊗ A A⊗ A

A⊗ A A

id⊗µ

µ⊗id µ

µ

1⊗ A A A⊗ 1

A⊗ A A A⊗ A

e⊗id

l−1 r−1

id id⊗e

µ µ

Terminology 4.1.55. A monoid in (Set,×, ∗) is a monoid in the usual sense, which
motivates the terminology. A monoid in (Vec,⊗,R) is an algebra. So when Vec or,
more generally, the category of modules over a ring is the basic category, a monoid
internal to (C,⊗, 1) is also called an algebra in C.

Definition 4.1.56. A monoid internal to a monoidal category (C,⊗, 1) will be
called an algebra in C. The category of algebras in C is denoted by Alg(C). When
C = Vec, we abbreviate Alg ≡ Alg(Vec).

Let us spell out the structure of an algebra on an ind-object Â represented by
the diagram A : I → Vec. The tensor square Â ⊗̂ Â is represented by the diagram
I× I→ Vec, (i, j) 7→ Ai ⊗ Aj. A map µ : Â ⊗̂ Â→ Â is represented by a family of
morphisms

µi,j : Ai ⊗ Aj −→ Ak(i,j) . (4.15)

This map is an associative multiplication if the families of morphisms

µi1i2,i3 := µk(i1,i2),i3 ◦ (µi1,i2 ⊗ id) : Ai1 ⊗ Ai2 ⊗ Ai3 −→ Ak(k(i1,i2),i3)

µi1,i2i3 := µi1,k(i2,i3) ◦ (id⊗ µi2,i3) : Ai1 ⊗ Ai2 ⊗ Ai3 −→ Ak(i1,k(i2,i3))

for all i1, i2, i3 ∈ I represent the same morphism in Ind(Vec). This is the case if
there are commutative diagrams

Ai1 ⊗ Ai2 ⊗ Ai3

Ak(k(i1,i2),i3) Ak(i1,k(i2,i3))

Al

µi1,i2i3µi1i2,i3

(4.16)

where the unmarked arrows are morphisms of the diagram A : I → Vec. Similarly,
the unit of the algebra is given by a map e : R→ Ai, such that there are commutative
diagrams

R⊗ Aj Aj Aj ⊗ R

Ai ⊗ Aj Aj ⊗ Ai

Ak(i,j) Al Ak(j,i)

e⊗id

l−1 r−1

id⊗e

µi,j µj,i

(4.17)

where again the unmarked arrows are some morphisms of the diagram A : I→ Vec.
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Example 4.1.57. Let Ā be a vector space with a filtration A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂
Ā, which can be viewed as a sequence A : ω → Vec of monomorphisms with colimit
Ā. An associative multiplication µ̄ : Ā ⊗ Ā → Ā is filtered if µ(Ai ⊗ Aj) ⊂ Ai+j.
Then the restrictions

µi,j := µ̄|Ai⊗Aj
: Ai ⊗ Aj 7−→ Ak(i,j)

for all i, j ∈ ω and k(i, j) = i + j represent an associative multiplication on the
ind-vector space Â represented by the diagram A. Moreover, e ∈ A0 is a unit of the
multiplication on Â.

Proposition 4.1.58. Let (C,⊗, 1) be a monoidal category. Let FC : Alg(C) → C

denote the natural functor that forgets the structure morphisms of an algebra object.
Then there is an injective and faithful functor I : Ind

(
Alg(C)

)
→ Alg

(
Ind(C)

)
, such

that the diagram

Ind
(
Alg(C)

)
Alg
(
Ind(C)

)
Ind(C)

I

Ind(FC) FInd(C)

(4.18)

commutes.

Proof. The diagonal functor I → I × I, i → (i, i) is final (Exercise 4.2). This
implies that the diagram I × I → Vec, (i, j) 7→ Ai ⊗ Aj and the diagram I → Vec,

i 7→ Ai ⊗ Ai represent the same ind-vector space Â⊗ Â. More precisely, the family
of maps id : Ai ⊗ Ai → Ai ⊗ Ai induces an isomorphism of presheaves

colim
i∈I

y(Ai ⊗ Ai)
∼=−→ colim

(i,j)∈I×I
y(Ai ⊗ Aj) . (4.19)

For every pair i, j ∈ I × J, let m(i, j) be in I such that there are maps i → m(i, j)
and j → m(i, j). Then there are morphisms Ai → Am(i,j) and Aj → Am(i,j) in the
filtered diagram A : I→ Vec. Their tensor product yields a family of morphisms

∆i,j : Ai ⊗ Aj −→ Am(i,j) ⊗ Am(i,j) ,

which represents the inverse of (4.19).
Let Âalg ∈ Ind(Alg(C)) be represented by I → Alg(C), i 7→ (Ai, µi, ei). The

family of morphisms µi : Ai ⊗ Ai → Ai defines a morphism µ : Â ⊗ Â → Â of ind-
objects in C. Composing the morphisms with ∆i,j yields the family of morphisms

µi,j : Ai ⊗ Aj
∆i,j−−→ Am(i,j) ⊗ Am(i,j)

µm(i,j)−−−−→ Am(i,j) .

which represents µ on the diagram (i, j) 7→ Ai⊗Aj. From the associativity of µi and
the fact that all maps in the diagram A : I→ C are homomorphisms of algebras, it
follows that there is a commutative diagram (4.16) for all i1, i2, i3 ∈ I. We conclude
that µ is an associative multiplication on Â.

Since any arrow σ : A0 → Ai of the diagram A is a homomorphism of unital
algebras, we have ei = σ(e0). This implies that the morphisms e : y(1) → Â of
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ind-objects in C that is represented by e0 : 1 → A0 makes the diagrams (4.17)
commutative, so that e is the unit of µ.

So far, we have shown that the structure morphisms µi, ei of any Âalg ∈ Ind(Alg(C))

represent the morphisms of an algebra structure on the underlying ind-object Â ∈
Ind(C). A morphism f : Âalg → B̂alg of ind-algebras is represented by a family
fi : Ai → Bi of morphisms of algebra objects in C. The morphisms fi induce a
morphism f : Â → B̂ of the underlying ind-objects in C. It is straight-forward to
check that f is compatible with the induced algebra structures on Â and B̂, that
is, f is a morphisms of algebras in Ind(C). We conclude that we have a functor
I : Ind

(
Alg(C)

)
→ Alg

(
Ind(C)

)
.

By definition, Âalg and I(Âalg) have the same underlying Â ∈ Ind(C), which
means that the diagram (4.18) commutes. A morphism in Ind(Alg(C)) is given by
a morphism in Ind(C) that satisfies compatibility conditions with the algebra struc-
tures. This implies that the forgetful morphism Ind(Alg(C)) → Ind(C) is faithful.
Since diagram (4.18) commutes, I must be faithful as well. Finally, if the morphisms
µi, µ

′
i : Ai ⊗ Ai → Ai and ei, e

′
i : 1 → Ai represent the same ind-algebra Âalg, then

the induced morphisms µ, µ′ : Â⊗ Â→ Â, e, e′ : YC(1)→ Â of ind-objects in C are
equal. We conclude that I is injective on objects.

Proposition 4.1.59. Let (V,⊗, 1) be a closed symmetric monoidal category that has
all filtered colimits. The functor Ind(V)→ V that maps an ind-object Â represented
by A : I→ V to the colimit Ā = colimi∈IAi preserves tensor products.

Proof. Let Â, B̂ ∈ Ind(V) be represented by diagrams A : I → C and B : J → C.
The tensor product Â ⊗̂ B̂ is represented by I× J→ V, (i, j)→ Ai ⊗Bj. We have

Â⊗ B̂ ∼= colim
(i,j)∈I×J

Ai ⊗Bj

∼= colim
i∈I

colim
j∈J

(Ai ⊗Bj)

∼= colim
i∈I

(
Ai ⊗ (colim

j∈J
Bj)
)

∼= (colim
i∈I

Ai)⊗ (colim
j∈J

Bj)

∼= Ā⊗ B̄ ,

where we have used that, since V is closed monoidal so that the tensor product with
a fixed object has a right adjoint, the tensor product commutes with colimits.

Corollary 4.1.60. The colimit functor Ū : Ind(V)→ V induces a functor

Alg(Ind(V)) −→ Alg(V) .

Example 4.1.61. It follows from Corollary 4.1.41 that the colimit functor Ū :
Ind(Vec)→ Vec is faithful on strict ind-objects. Corollary 4.1.60 then implies that
an algebra structure on the strict ind-vector space Â can be identified with an
algebra structure on the colimit vector space Ā. Note, however, that the colimit
functor Â 7→ Ā is neither essentially injective nor full (Remark 4.1.43). This means
that non-isomorphic ind-vector spaces Â ≇ B̂ can have isomorphic underlying vector
spaces Ā ∼= B̄, and that there may be algebra structures on Ā that do not arise from
an algebra structure on Â.
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Example 4.1.62. The category V = grVec of Z-graded vector spaces is closed
symmetric monoidal. The tensor product of two graded vector spaces V• and W• is
given by

(V ⊗W )n =
⊕
p+q=n

Vp ⊗Wq .

The tensor unit is R viewed as graded vector space concentrated in degree 0. The
symmetric structure is τ(v ⊗ w) = (−1)|v| |w|w ⊗ v. The inner hom-object is the
graded vector space

HomgrVec(V,W )n =
∏
p∈Z

HomVec(Vp,Wp+n) .

By Corollary 4.1.41 the colimit functor Ind(grVec)→ grVec that maps the ind-object
represented by A : I → grVec to Ā = colimi∈IAi is faithful on strict ind-objects.
Corollary 4.1.60 then shows, that an algebra structure on a strict ind-graded vector
space Â can be identified with an algebra structure on the graded vector space Ā.

Definition 4.1.63. Let (C,⊗, 1) be an additive monoidal category. Let (A, µ, e) be
an algebra object in C. A derivation of A is a morphism δ : A→ A such that the
diagram

A⊗ A A

A⊗ A A

µ

δ⊗id+id⊗δ δ

µ

(4.20)

commutes.

Proposition 4.1.64. Let A be an algebra in an additive monoidal category C. Then
Der(A) is closed under the commutator of composition.

Proof. This is shown by a direct calculation, which is analogous to the case of
algebras is Vec.

4.2 Sequential ind/pro-objects

Definition 4.2.1. An ind-object (pro-object) is called sequential if it is represented
by a diagram indexed by ω (ωop).

Spelling out this definition, we see that a strict sequential ind-object of C is
represented by a sequence

X0
σ0−→ X1

σ1−→ X2
σ2−→ . . . ,

such that every σi is a monomorphism. Dually, a strict sequential pro-object of C is
represented by a sequence

X0
σ0←− X1

σ1←− X2
σ2←− . . . ,

such that every σi is an epimorphism. Many of the ind-objects and pro-objects we
are interested in arise from such diagrams, so we will study them in more detail.
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4.2.1 Representation of morphisms

There is an explicit description of the set of morphisms between sequential ind-
objects.

Proposition 4.2.2. Let X̂ and Ŷ be sequential ind-objects in C represented by the
sequences X0

σ0→ X1
σ1→ . . . and Y0

τ0→ Y1
τ1→ . . .. A morphism in IndC(X̂, Ŷ ) is

represented by a diagram

X0 X1 X2 . . .

Yj(0) Yj(1) Yj(2) . . .

f0 f1 f2 (4.21)

where j(i) ≤ j(i+ 1) for all i ∈ ω.
Moreover, if all target indices j(i) are chosen to be minimal in the sense that no

fi factors like

Xi

Yj(i)−1 Yj(i)

fi
f ′i

τj(i)−1

and if Ŷ is strict, then every fi is unique.

Proof. In the first step we calculate the inner colimit of Equation (4.3). The set
colimj C(Xi, Yj) is the quotient of the disjoint union of all C(Xi, Yj), j ≥ 0 modulo
the equivalence relation that is generated by f ∼ τj ◦ f for all f ∈ C(Xi, Yj), j ≥ 0,

colim
j

C(Xi, Yj) =
∐
j

C(Xi, Yj)/ ∼ . (4.22)

Since the index category ω is ordered and bounded from below every element of the
quotient has a representative fi : Xi → Yj(i) for which j(i) is minimal. From the
minimality it follows that j(i) ≤ j(i+ 1).

In the second step we construct the limit of Equation (4.3). The diagram of
which we have to compute the limit is

C0

σ∗0←− C1

σ∗1←− C2

σ∗2←− . . . ,

where Ci := colimj C(Xi, Yj) and

σ∗i : colim
j

C(Xi+1, Yj) −→ colim
j

C(Xi, Yj)

[fi+1] 7−→ [fi+1 ◦ σi] .

Every equivalence class in Ci has a representative fi : Xi → Yj(i) for which j(i) is
minimal. An element in the limit is given by a sequence

([f0], [f1], [f2], . . .) ∈
∏
i

colim
j

C(Xi, Yj)
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with the property that σ∗i [fi+1] = [fi] for all i. This means that for every fi : Xi →
Yj(i) and fi+1 : Xi+1 → Yj(i+1) we have a commutative square

Xi Xi+1

Yj(i) Yj(i+1)

σi

fi fi+1

τ

where
τ : Yj(i)

τj(i)−−→ Yj(i)+1 −→ . . .
τj(i+1)−1−−−−−→ Yj(i+1) .

The commutativity of the infinite diagram of the proposition is equivalent to the
commutativity of these squares for all i.

We have already seen that the target indices j(i) can be chosen to be minimal.
Assume now that Ŷ is strict, i.e. all morphisms τj are monomorphisms. This implies
that if two morphisms f, f ′ : Xi → Xj with the same domain and target represent
the same equivalence class [f : Xi → Yj] = [f ′ : Xi → Yj] in the colimit (4.22), then
they are equal f = f ′. In particular, the morphism fi : Xi → Yj(i) that represents
[fi] is unique.

The composition of an ind-morphism X̂ → Ŷ as in Proposition 4.2.2 with another
ind-morphism ĝ : Ŷ → Ẑ of sequential ind-objects represented by a family g :
Yj → Yk(j) is represented by the family of morphisms obtained by stacking the two
diagrams of type (4.21).

X0 X1 X2 . . .

Yj(0) Xj(1) Xj(2) . . .

Zk(j(0)) Zk(j(1)) Zk(j(2)) . . .

f0 f1 f2

gj(0) gj(1) gj(2)

(4.23)

Note that, even if i 7→ j(i) and j 7→ k(j) are minimal in the sense of Proposi-
tion 4.2.2, the numbers i 7→ k(j(i)) may not.

Corollary 4.2.3. Let X̂ be a sequential ind-object of C represented by the sequence
X0

σ0→ X1
σ1→ . . . and let C be an object in C.

(i) A morphism in IndC(X̂, yC) is represented by a unique family of morphisms
{fi : Xi → C}i∈ω satisfying fi+1 ◦ σi = fi.

(ii) A morphism in IndC(yC, X̂) is represented by a morphism f : C → Xi. More-
over, if i is minimal and X̂ is strict, then f is unique.

Warning 4.2.4. The Yoneda embedding commutes with limits but does not com-
mute with colimits, not even with filtered colimits. This means that even if a
diagram X = (X0 → X1 → . . .) does have a colimit colimiXi in C it is generally
not true that colimiXi viewed as constant ind-object is isomorphic to the ind-object
represented by X. The next example illustrates this phenomenon.
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Example 4.2.5 (Exhaustion of the real line). Let C = Mfld be the category of
smooth finite-dimensional manifolds. Consider the sequence of embeddings of open
intervals,

X :=
(
(−1, 1) ↪−→ (−2, 2) ↪−→ (−3, 3) ↪−→ . . .

)
.

On the one hand, a morphism of ind-manifolds from the constant ind-object R to
the ind-manifold X̂ represented by this sequence is, according to Proposition 4.2.2,
given by a smooth map from R to one of the intervals (−n, n), in other words, by
a bounded function on the real line. On the other hand, the colimit of X is given
by the real line R, so that a morphism from R to the colimit of X is, therefore, a
smooth, not necessarily bounded function.

Corollary 4.2.6. Let X̌ and Y̌ be sequential pro-objects in C represented by the
sequences X0

σ0← X1
σ1← . . . and Y0

τ0← Y1
τ1← . . .. A morphism in ProC(X̌, Y̌ ) is given

by a diagram

Xi(0) Xi(1) Xi(2) . . .

Y0 Y1 Y2 . . .

f0 f1 f2

where all i(j) ≤ i(j + 1) for all j ∈ ω.
Moreover, if all source indices i(j) are chosen to be minimal and if X̌ is strict,

then every fi is unique.

Proof. The corollary is obtained from Proposition 4.2.2 by using the isomorphism
of Proposition 4.1.25.

Corollary 4.2.7. Let X̌ be as in Corollary 4.2.6 and let C be an object in C.

(i) A morphism in ProC(yC, X̌) is uniquely given by a family of morphisms {fi :
C → Xi}i∈ω satisfying σi ◦ fi+1 = fi.

(ii) A morphism in ProC(X̌, yC) is represented by a morphism f : Xi → C.
Moreover, if i is minimal and X̌ is strict, then f is unique.

4.2.2 Sections, retracts, isomorphisms, derivations

Choosing the target indices j(i) to be minimal makes the family of morphisms repre-
senting an ind-morphism unique, the minimal choice may be difficult or not natural.
For example, the identity morphism of a sequential ind-object X̂, is naturally rep-
resented by the family id : Xi → Xi, even though j(i) = i is not the minimal choice
when σi−1 : Xi−1 → Xi is an isomorphism. The price we have to pay is that different
families of morphisms may represent the same ind-morphism. The next proposition
gives a criterion to decide when this is the case.

Proposition 4.2.8. Let X̂ and Ŷ be sequential ind-objects as in Proposition 4.2.2.
Two families of morphisms fi : Xi → Yj(i) and f

′
i : Xi → Yj′(i), with j(i) and j′(i)
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not necessarily minimal, represent the same morphism of ind-objects if and only if
for every i ∈ ω one of the following two diagrams commutes,

Xi

Yj(i) Yj′(i)

fi
f ′i or

Xi

Yj′(i) Yj(i)

f ′i
fi

depending on whether j(i) ≤ j′(i) or j(i) ≥ j′(i).

Proof.

Corollary 4.2.9. Let X̂ be a strict sequential ind-object of C represented by the
sequence X0

σ0→ X1
σ1→ . . . . A family of morphisms fi : Xi → Xj(i) represents

the identity morphism of X̂ if and only if for every i ∈ ω one of the following two
conditions is satisfied.

(i) If i ≤ j(i), then fi is equal to Xi
σ→ Xj(i).

(ii) If i > j(i), then Xj(i)
σ→ Xi is an isomorphism and fi its inverse.

Proof. We apply Proposition 4.2.8 to the case Ŷ = X̂ and f ′i := idXi
. When

i ≤ j(i), the second diagram of Proposition 4.2.8 must commute, which is equivalent
to condition (i).

When i > j(i), the first diagram of diagram of Proposition 4.2.8 must commute,
that is, σ ◦ fi = idXi

. Composing on the right with σ yields σ ◦ fi ◦ σ = σ. By the
assumption of strictness of X̂, the morphism σ : Xj(i) → Xi is a monomorphism,
so it follows that fi ◦ σ = idXj(i), i.e. fi is the left and right inverse of σ, which is
condition (ii).

Corollary 4.2.10. Let X̂ be a strict sequential ind-object of C represented by the
sequence X0

σ0→ X1
σ1→ . . . in which none of the arrows is an isomorphism. Then

the family of morphisms idXi
: Xi → Xi is the unique representative of the identity

morphism with minimal target indices.

With Corollary 4.2.9 and the composition of ind-morphisms in terms of the
representing families by diagram (4.23), we can easily determine the conditions for
families of morphisms to represent sections, retractions, or isomorphisms in the ind-
category. Spelling these conditions out would be highly redundant, though.

Example 4.2.11. Let X̂ be the strict sequential ind-object of C represented by the
diagram X : ω → C. In Example 4.1.12 we have seen that every unbounded order
preserving map Φ : ω → ω is final, which implies that the ind-object X̂ ′ represented
by X ◦ Φ is isomorphic to X̂. The isomorphism f : X̂ ′ → X̂ is represented by the

family of morphisms X ′i = XΦ(i)
id→ XΦ(i).

As before, we can use the isomorphism of ind- and pro-categories of Proposi-
tion 4.1.25 to obtain the dual propositions for pro-objects. We give just one exam-
ple, because we will need it later for the description of vector fields on pro-manifolds
as sections on the pro-tangent bundle.
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Proposition 4.2.12. Let X̌ and Y̌ be sequential pro-objects in C represented by
X0

σ0← X1
σ1← . . . and Y0

τ0← X1
τ1← . . .. Let f̌ : X̌ → Y̌ be a morphism which is

represented by the family (fi : Xi → Yi)i∈ω.
A morphism ǧ : Y̌ → X̌ represented by a family (gi : Yj(i) → Xi)i∈ω is a section

of f̌ if and only if for every i ∈ ω one of the following two conditions is satisfied.

(i) If i ≤ j(i), then fi ◦ gi is equal to Yj(i)
τ→ Yi.

(ii) If i > j(i), then Yi
τ→ Yj(i) is an isomorphism and fi ◦ gi its inverse.

Remark 4.2.13. When in the sequence X0
τ0← X1

τ1← . . . a morphism τi is an isomor-
phism, we can skip Xi+1 and replace τi with τi ◦ τi+1 : Xi+2 → Xi without changing
the pro-object. Unless the sequence is stably constant, i.e. τi is an isomorphism for
all i ≫ 0, we obtain by reiterating this procedure a reduced sequence for which
none of the connecting isomorphisms τi is an isomorphisms. If we assume further
that the sequence is strict, i.e. all τi are epimorphisms, it follows that no compo-
sition of connecting morphisms is an isomorphism. In that case, condition (ii) of
Proposition 4.2.12 cannot occur.

Example 4.2.14. Let X0
σ0← X1

σ1← . . . be a sequence representing the pro-object X̌.
By condition (i) of Proposition 4.2.12, the morphism σ̌ : X̌ → X̌ represented by the
family σk : Xk+1 → Xk is a section of the identity morphism, which is represented
by idXk

: Xk → Xk. We conclude that σ̌ represents the identity morphism of X̌.

Proposition 4.2.15. Let A0
σ0→ A1

σ1→ . . . be a sequence of algebras. Then a deriva-
tion of the algebra in ind-vector spaces we obtain from Proposition 4.1.58 is repre-
sented by a family of linear maps δi : Ai → Aj(i), i ∈ ω, such that for all i and all
a, b ∈ Ai,

δi(ab) = (δia)σ(b) + σ(a) (δib) ,

where σ : Ai → Aj(i) is the linear map of the diagram A.

Proof. By Proposition 4.2.2 a morphism δ : Â → Â is represented by a family of
morphisms δi : Ai 7→ Aj(i). Let a, b ∈ Ai and let σ : Ai → Aj(i) denote the map of
the diagram A : ω → Vec. If the diagram (4.20) commutes, then

δi(ab) = (δi ◦ µi)(a⊗ b)
=
(
µ ◦ (δi ⊗ id + id⊗ δi ◦ µ)

)
(a⊗ b)

= (δia)σ(b) + σ(a) (δib) .

Let a ∈ Ai and b ∈ Aj be elements that live in different levels of the ind-algebra.

The product of a and b in the algebra Â is given by first mapping them to a higher
level Ak, k ≥ i, j by the maps Ai → Ak and Aj → Ak in the diagram A : ω → Vec
and multiplying them there.

4.3 Differential geometry on pro-manifolds

A pro-manifold is a pro-object of the category Mfld of smooth finite-dimensional
manifolds. In our Wish list 3.4.2, we have given conditions for a category to be
a good setting for the differential geometry of infinite jets. Our wishes have been
granted.
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Proposition 4.3.1. The category ProMfld satisfies the conditions of the Wish
list 3.4.2.

Proof. (i) In Section 4.1.2 we have seen that the embedding y : Mfld → ProMfld
is injective, full, and faithful. (ii) An infinite inverse sequence X0 ← X1 ← . . . of
manifolds is a diagram X : ωop →Mfld indexed by the cofiltered category ωop. The
limit of yX is the copresheaf pro-represented by X. (iii) The functor of points is a
concrete structure on Pro(Mfld) that satisfies Equation (4.13). (iv) was shown in
Corollary 4.2.7.

Proposition 4.3.2. Let X̌ be a strict sequential pro-manifold represented by X0
σ0←

X1
σ1← . . .. Then every point x : ∗ → X̌ is given by a unique sequence x0, x1, x2, . . .

of points xi ∈ Xi such that xi = σi(xi+1) for all i ≥ 0.

Proof. The proposition is a special case of Corollary 4.2.6.

4.3.1 Tangent bundle and vector fields

Proposition 4.1.31 and Corollary 4.1.32 state that covariant and contravariant func-
tors extend to functors between the ind/pro-categories. Therefore, all functorial
constructions on smooth manifolds generalize to pro-manifolds in a straight-forward
way. The same holds for natural transformations. Since pro-manifolds arise as cofil-
tered diagrams of manifolds that fail to have a limit in Mfld, we will describe the
generalized geometric structures in terms of these diagrams.

First, we consider the tangent functor T , which we view as endofunctor of Mfld.
According to Corollary 4.1.32, T induces a functor

Pro(T ) : Pro(Mfld) −→ Pro(Mfld) .

If X̌ is a pro-manifold represented by X : I → Mfld then Pro(T )X̌ is represented
by the diagram TX : I → Mfld. The tangent bundle projection of manifolds is
a natural transformation πM : TM → M . On the diagram X : I → Mfld, the
extension Pro(π) is represented by the smooth maps πXi

: TXi → Xi. For example,
the tangent bundle projection of a sequential pro-manifold is represented by the
diagram

TX0 TX1 TX1 . . .

X0 X1 X2 . . .

πX0
πX1

Tσ0

πX2

Tσ1

σ0 σ1

The zero section, the addition of tangent vectors, the scalar R-multiplication of
tangent vectors, are all represented in an analogous way, by applying the natural
transformations of manifolds level-wise to every object of the diagrams.

As we have seen in Proposition 4.1.33, Pro is a functor, that is, it preserves the
composition of functors. For the square of the tangent functor we obtain

Pro(T 2) ∼= Pro(T ) Pro(T ) .

Moreover, Proposition 4.1.40 implies that the pullback Pro(T )X̌ ×X̌ Pro(T )X̌ is
represented by the diagram i 7→ TXi×Xi

TXi. This justifies the following notation.
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Notation 4.3.3. We will use the same notation for the functors and natural trans-
formations on Mfld as for their extensions to ProMfld, that is, T ≡ Pro(T ), π ≡
Pro(π), etc. It will be clear from the context if they are applied to a pro-manifold
or a manifold.

The diagram i 7→ TXi is equipped with a level-wise vector bundle structure, so
that it can be understood as pro-vector bundle. Alternatively, we can view TX̌ → X̌
as bundle of vector spaces in the category ProMfld.

A single tangent vector of X̌ is a point v : ∗ → TX̌. Every tangent vector v
projects to its base point πX̌(v) := πX̌ ◦ v : ∗ → X̌. The tangent fiber TxX̌ at a
point x : ∗ → X̌ is defined as the pull-back

TxX̌ T X̌

∗ X̌

πX̌

x

For a sequential pro-manifold, a point x is represented by a sequence of points
(x0, x1, x2, . . .) such that xi = σi(xi+1). A tangent vector at x is represented by a
sequence of tangent vectors (v0, v1, v2, . . .), vi ∈ TxiXi such that vi = Tσi(vi+1). The
tangent fiber TxX̌ is the pro-vector space represented by the diagram

Tx0X0

Tx0σ0←−−−− Tx1X1

Tx1σ1←−−−− Tx2X2

Tx2σ2←−−−− . . .

Let Y̌ be a pro-manifold represented by Y : J → Mfld and f : X̌ → Y̌ a
morphism of pro-manifolds represented by the family fj : Xk(j) → Yj. Then the
tangent morphism Tf : TX̌ → T Y̌ is the morphism of pro-manifolds (or pro-
vector bundles) represented by the family Tfj : TXk(j) → TYj. It maps a tangent
vector v : ∗ → TX̌ to the tangent vector Tf v := Tf ◦ v : ∗ → T Y̌ .

A vector field on X̌ is a section of πX̌ : TX̌ → X̌. The value of a vector field
v : X̌ → TX̌ at the point x : ∗ → X̌ is the tangent vector vx := v◦x : ∗ → TX̌. The
following proposition describes vector fields on a sequential pro-manifold in terms
of the representing sequences.

Proposition 4.3.4. A vector field v on the sequential pro-manifold represented by
X0

σ0← X1
σ1← . . . is represented by a family of smooth maps (vi : Xk(i) → TXi)i∈ω

such that the diagram

TX0 TX1 TX2 . . .

Xk(0) Xk(1) Xk(2) . . .

Tσ0 Tσ1

v0 v1

σ

v2

σ

commutes and for all i ≥ 0 we have:

(i) If i ≤ k(i), then πXi
◦ vi is equal to Xk(i)

σ→ Xi.

(ii) If i > k(i), then σ : Xi
σ→ Xk(i) is an isomorphism and πXi

◦ vi its inverse.
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Proof. The proposition follows from Corollary 4.2.6 and Proposition 4.2.12.

All functors on vector bundles, such as the functors mapping a vector bundle E
to the sum E ⊕ E, the tensor square E ⊗ E, exterior powers ∧kE, etc. extend by
Corollary 4.1.32 to pro-vector bundles. Composing them with the tangent functor
extends these constructions to the tangent bundle of pro-manifolds. For example,
∧kTX̌ is the pro-vector bundle represented by the sequence

∧kTX0
∧kTσ0←−−−−− ∧kTX1

∧kTσ1←−−−−− ∧kTX2 ←− . . .

A section of ∧kTX̌ is a k-vector field on the pro-manifold X̌.

Remark 4.3.5. Constructions that are not functorial, do generally not extend to
pro-vector objects by applying them to every object of a representing diagram. For
example, mapping a vector bundle to its dual or to its space of sections is not
functorial.

A vector field v on a manifold M can be identified with its action on smooth
functions, which is a derivation of the R-algebra of smooth functions C∞(M), i.e. a
linear map

C∞(M) −→ C∞(M)

f 7−→ v · f ,
that satisfies the Leibniz rule

v · (fg) = (v · f) g + f (v · g) .

The algebraic description of vector fields is typically the best for working with al-
gebraic structures in differential geometry. For example, it is straight-forward to
check that the commutator of two derivations is a derivation, which shows that the
space of vector fields is equipped with a Lie bracket. Therefore, we would like to
generalize this point of view to the pro-manifold setting.

Mapping a smooth manifold to its algebra of smooth functions is a functor C∞ :
Mfld→ Algop. By Corollary 4.1.32, we obtain a functor

C∞ ≡ Pro(C∞) : Pro(Mfld) −→ Ind(Alg)op ,

which maps the pro-manifold X̌ represented by X : I → Mfld to the ind-algebra
C∞(X̌) represented by (C∞X)op : Iop → Alg. Since mapping an algebra to its Lie
algebra of derivations is not functorial, we cannot obtain the derivations of C∞(X̌)
in the same way. Instead, we can use Proposition 4.1.58, which shows that an ind-
algebra can be viewed as an algebra of ind-objects, that is, a monoid internal to
ind-vector spaces. As is the case for any algebra in an additive monoidal category,
its derivations (Definition 4.1.63) form a Lie algebra (Proposition 4.1.64).

4.3.2 Vector fields as derivations

Proposition 4.3.6. Let X̌ be the pro-manifold represented by the cofiltered diagram
X : I → Mfld. Then there is a natural bijection between sections of the tangent
bundle TX̌ → X̌ in pro-manifolds and the derivations of C∞(X̌) viewed as algebra
in the category of ind-vector spaces.
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For ordinary manifolds, the map from vector fields to derivations is obvious,
mapping the tangent vector at every point to its directional derivative. The difficult
part is to show that this map has an inverse, for which Hadamard’s lemma is used.
For pro-manifolds the situation is similar. The map from vector fields to derivations
is straight-forward, while for the inverse map we need the following lemma.

Lemma 4.3.7. Let τ : Y → X be a smooth map of manifolds. Let δ : C∞(X) →
C∞(Y ) be a linear map such that δ(fg) = (δf) (τ ∗g) + (τ ∗f) (δg) for all f, g ∈
C∞(X). Then there is a unique map v : Y → TX making the diagram

Y TX

X

τ

v

πX

commutative, such that (δf)(y) = vy · f for all f ∈ C∞(X) and y ∈ Y .

Proof. Let f ∈ C∞(X) and y ∈ Y . Let (x1, . . . , xn) be local coordinates centered

at
(
τ(y)

)i
= 0. By Hadamard’s lemma f(x) = f(0) + hi(x)x

i, for some functions

hi ∈ C∞(X). At x = 0 we have hi(0) =
∂f
∂xi

(0). We thus obtain

(δf)(y) =
{
(δhi)(τ

∗xi) + (τ ∗hi)(δx
i)
}
y
= (δxi)(y)

∂f

∂xi
(0)

= vy · f ,

where vy = (δxi)(y) ∂
∂xi

.

Proof of Prop. 4.3.6. We give the proof for a sequential pro-manifold X̌ represented
by the diagram X0

τ0← X1
τ1← . . .. Furthermore, we will assume for simplicity that

the sequence is strict and reduced, every morphisms τi is an epimorphism but not
an isomorphism. This is the case we will need later. The proof for a general pro-
manifold is analogous.

Let v : X̌ → TX̌ be a vector field on X̌. By Proposition 4.3.4, v is represented
by a family of smooth maps vi : Xk(i) → Xi, i ∈ ω such that

Xk(i) TXi

Xi

τi←k(i)

vi

πXi
(4.24)

commutes. This defines a map

δi : C
∞(Xi) −→ C∞(Xk(i))

f 7−→ (y 7→ vy · f) .

for every i ∈ ω, where τi←k(i) denotes the morphism we get by applying the functor
X to i ← k(i). Since by Proposition 4.3.4 the maps vi satisfy Tτi ◦ vi = vi−1 ◦
τk(i−1)←k(i), the maps δi satisfy δi ◦ τ ∗i = τ ∗k(i−1)←k(i) ◦ δi−1. This shows that the
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family δi represents an endomorphism of the ind-vector space C∞(X̌), which is
represented by the diagram

C∞(X0)
τ∗0−→ C∞(X1)

τ∗1−→ C∞(X2)
τ∗2−→ . . .

The Leibniz rule for the directional derivative states that

vy · fg = (vy · f) g(τ(y)) + f(τ(y)) (vy · g) ,

where τ = τi←k(i). This shows that (δi)i∈ω represents a derivation of C∞(X̌).
Conversely, let δ be a derivation of C∞(X̌) represented by maps δi : C

∞(Xi)→
C∞(Xk(i)). Then lemma 4.3.7 tells us that every δi is the directional derivative
given by a unique smooth map vi : Xk(i) → TXi. Since the family δi represents a
morphism of ind-vector spaces, the family vi represents a morphism v : X̌ → TX̌ of
pro-manifolds. Moreover, since diagram (4.24) commutes, Proposition 4.3.4 implies
that v is a section of the bundle projection TX̌ → X̌.

Corollary 4.3.8. The set of vector fields on a pro-manifold is a Lie algebra object
in Ind(Vec).

Proof. This follows from Proposition 4.3.6 and Proposition 4.1.64.

To get a better intuition for vector fields on pro-manifolds we will spell out in
local coordinates the structures we have on the pro-manifold represented by the
diagram

R0 ←− R1 ←− R2 ←− . . .

where Ri+1 → Ri is the projection to the first i-factors (cf. example 4.1.8). Let
us denote this pro-manifold by Ř∞. In local coordinates every submersion is a
composition of such projections, so that Ř∞ is the local model for a large class of
pro-manifolds [GP17].

Let (x1, . . . , xi) be the canonical coordinates of Ri. Then a point p : ∗ → Ř∞ can
be identified with the infinite sequence (x1(p), x2(p), . . .). In fact, by Equation (4.13),
the underlying set is

|Ř∞| =
∞∏
i=1

|R| .

A function f : ∗ → C∞(Ř∞) is a smooth function f ∈ C∞(Ri) for some i, that is, a
function f = f(x1, . . . , xi) that depends smoothly on a finite number of coordinates.
A tangent vector is an element of the set

|T Ř∞| =
∞∏
i=1

|TR| .

Let ( ∂
∂x1
, . . . , ∂

∂xi
) be the coordinate vector fields on Ri. Then a tangent vector

vp : ∗ 7→ T Ř∞ at the point p = (p1, p2, . . .) is given by an infinite sequence

∞∏
i=1

TR ∋
(
v1p

∂

∂x1

∣∣∣
p1
, v2p

∂

∂x2

∣∣∣
p2
, . . .

)
≡ v1p

∂

∂x1

∣∣∣
p1
+ v2p

∂

∂x2

∣∣∣
p2
+ . . .
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for vip ∈ R, where the infinite sum on the right side is a somewhat abusive but more

suggestive notation. A vector field v ∈ X(Ř∞) is represented by a family of maps
vi : Rk(i) → TRi, where we recall that k(i) ≤ k(i+ 1). In coordinates, it is given by
the infinite sum

v = v1
∂

∂x1
+ v2

∂

∂x2
+ . . . = vi

∂

∂xi
,

where vi ∈ C∞(Rk(i)) are the component functions of v. Note that the vi are very
different from the maps vi, which are given in local coordinates by the partial sums

vi(x
1, . . . , xk(i)) = v1(x1, . . . , xk(1))

∂

∂x1
+ . . .+ vi(x1, . . . , xk(i))

∂

∂xi
.

The action of v on f ∈ C∞(Ri) is given by

v · f = v1
∂f

∂x1
+ . . .+ vi

∂f

∂xi
,

which is a function in C∞(Rk(i)). Let w be a vector field represented by the maps
wi : Rl(i) → TRi. The Lie bracket of v and w is given by

[v, w] =
(
vj
∂wi

∂xj
− wj ∂v

i

∂xj

) ∂

∂xi
.

The difference to the usual formula is that the sum over i is infinite. While the
index j runs from 1 to∞ as well, the condition that all component functions vi and
wi are smooth functions on a finite-dimensional manifold ensures that the sum over
j is finite.

4.3.3 Differential forms

Assigning to a manifold the complex of differential forms is a functor Ω : Mfld →
dgAlgop to differential graded algebras. By Corollary 4.1.32 this induces a functor

Ω ≡ Pro(Ω) : Pro(Mfld) −→ Ind(dgAlg)op .

When X̌ ∈ Pro(Mfld) is represented by the cofiltered diagram X : I → Mfld,
then Ω(X̌) is represented by the filtered diagram Iop → dgAlg, i 7→ Ω(Xi). By
Proposition 4.1.58, we can view the underlying ind-algebra of Ω(X̌) as an algebra
in the category Ind(grVec) of ind-Z graded vector spaces. The product of Ω(X̌) will
be denoted as usual by ∧.

A differential form on X̌ is an element of the underlying set of Ω(X̌). Every
differential form is represented by an element α ∈ Ωp(Xi), where p is the degree of
α.

Let α, β ∈ Ω(X̌) be represented by α ∈ Ωp(Xi) and β ∈ Ωq(Xj). Since the index
category I is cofiltered, there are morphisms i ← k → j in I. They are mapped by
the functor X to morphisms

Xi
τi←k←−− Xk

τj←k−−−→ Xj .
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The product α ∧ β is then represented by

τ ∗i←kα ∧ τ ∗j←kβ ∈ Ωp+q(Xk) . (4.25)

This shows that the algebra in Ind(grVec) is graded.
Every Ω(Xi) is equipped with the differential di. The differential of the form

represented by α ∈ Ωp(Xi) is represented by diα ∈ Ωp+1(Xi). The family of all
de Rham differentials di : Ω

•(Xi) → Ω•+1(Xi) represents a degree 1 map d of the
graded vector space Ω(X̌).

Let β ∈ Ω(X̌) be represented by β ∈ Ωq(Xj). Their ∧-product is represented
by 4.25, so d(α ∧ β) is represented by

dk(τ
∗
i←kα ∧ τ ∗j←kβ) = dkτ

∗
i←kα ∧ τ ∗j←kβ + (−1)pτ ∗i←kα ∧ dkτ ∗j←kβ

= τ ∗i←kdiα ∧ τ ∗j←kβ + (−1)pτ ∗i←kα ∧ τ ∗j←kdjβ ,
(4.26)

where we have used that the de Rham differentials commute with pullbacks. The
right side of Equation (4.26) represents dα ∧ β + (−1)pα ∧ dβ, which shows that d
is a derivation.

4.3.4 Inner derivative

For every tangent vector vm on a manifold M , let ιv : Ω
1(M) → R, ιvmα = ⟨α, vm⟩

denote the evaluation of 1-forms on vm. Let f : M → N be a smooth map. Recall
that the pullback f ∗α of a 1-form α ∈ Ω1(N) is defined by ιvmf

∗α = ιTf vmα. This
means that for a tangent vector on the pro-manifold X̌ represented by vx,i : ∗ → TXi,
we have commutative diagrams

Ω1(Xi) Ω1(Xj)

R

τ∗

ιvx,i
ιvx,j

where τ : Xj → Xi is a morphism of the diagram X : I → Mfld, so that vx,i =
Tτ vx,j. This shows that the family of maps ιv,i : Ω

1(Xi)→ R represents a morphism
of ind-vector spaces

ιvx : Ω1(X̌) −→ R ,

which is the evaluation of 1-forms on X̌ on the tangent vector vx. Let now v : X̌ →
TX̌ be a vector field represented by the smooth maps vi : Xk(i) → TXi. For every
α ∈ Ω1(X̌) we have the family of smooth maps

(ιvα)i : Xk(i) −→ R
x 7−→ ιvxα

which defines a morphism of ind-manifolds ιvα : X̌ → R. If α is represented by
α ∈ Ω1(Xi), then ιvα is represented by (ιvα)i ∈ C∞(Xk(i)), which is given explicitly
by

(ιvα)i(x) = ⟨ατ(x), vi,x⟩ .
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where τ : Xk(i) → Xi is a smooth map of the diagram X. This map depends linearly
on α, so we obtain a morphism of ind-vector spaces

ιv : Ω
1(X̌) −→ C∞(X̌) ,

which is the pairing of 1-forms with the vector field v in the setting of pro-manifolds.
In order to extend the pairing to the inner derivative on higher degree differential

forms we use that Ω(X̌) is generated as graded commutative algebra by functions
and 1-forms. For every function f ∈ C∞(X̌) we set

ιvf := 0 .

For α, β ∈ Ω1(X̌) we define

ιv(α ∧ β) := ιvα ∧ β − α ∧ ιvβ . (4.27)

Note that in order to represent the right side by a 1-form on Xl we have to first
pull-back all factors along the smooth maps

Xl

Xk(i) Xj Xi Xk(j)

in the diagram X and then multiply and add them in Ω(Xl). Iterating (4.27), we
obtain a derivation of Ω(X̌). The result is summarized in the following statment.

Proposition 4.3.9. Let v ∈ X(X̌) be a vector field on the pro-manifold X̌. Then
the pairing of vector fields and forms on X̌ extends to a unique degree −1 derivation
of Ω(X̌).

4.3.5 Cartan calculus

Proposition 4.3.10. In the graded Lie algebra Der
(
Ω(X̌)

)
let

Lv := [ιv, d] .

denote the Lie derivative with respect to the vector field v ∈ X(X̌). Then

[Lv, ιw] = ι[v,w] , [Lv,Lw] = L[v,w] ,

[d, d] = [ιv, ιw] = [Lv, d] = 0 ,

Proof. The proof is completely analogous to the proof for ordinary manifolds. The
relations only have to be checked on the generators of the algebra Ω(X̌), which are
functions f and exact 1-forms α = df . Since d is a differential, [d, d] = 2d2 = 0.
Since ιvιwf = 0 and ιvιwα = 0 for degree reasons, [ιv, ιw] = 0. Using the graded
Jacobi identity, we obtain

[Lv, d] = [[ιv, d], d] = [ιv, [d, d]]− [[ιv, d], d]

= −[Lv, d] ,
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which implies [d,Lv] = 0. On functions, we have Lvf = ιvdf = v · f . It follows that

[Lv, ιw]df = v · (w · f)− w · (v · f) = [v, w] · f
= ι[v,w]df

Moreover, for degree reasons we have [Lv, ιw]f = 0 = ι[v,w]f . Together this implies
the relation [Lv, ιw] = ι[v,w]. Finally, we compute

[Lv,Lw] = [Lv, [ιw, d]] = [[Lv, ιw], d]− [ιv, [Lv, d]] = [ι[v,w], d]

= L[v,w] ,

which finishes the proof.

Terminology 4.3.11. The graded Lie subalgebra of Der
(
Ω(X̌)

)
generated by d, ιv,

Lv for all v ∈ X(X̌) is called the Cartan calculus on the pro-manifold X̌.

Let us spell out the Cartan calculus on the pro-manifold represented by R0 ←
R1 ← . . . in terms of local coordinates (x1, x2, . . .) as at the end of 4.3.2. Let
dxi denote the coordinate 1-forms. They are dual to the coordinate vector fields
ι ∂

∂xi
dxj = δji . Every 1-form α is given by a finite sum

α = α1dx
1 + . . .+ αndx

n = αidx
i ,

where αi ∈ C∞(Rk(i)). Let l be the maximum of all indices {n, k(1), . . . , k(i)}. Then
we can view all functions as functions on C∞(Rl) and therefore view α as a 1-form
on Rl. Similarly, a general p-form is given by a finite sum

ω =
∑

0<i1<...<ip≤n

ωi1,...,ipdx
i1 ∧ . . . ∧ dxip ,

where ωi1,...,ip ∈ C∞(Rk) for some k. The de Rham differential of a function f on
Rn is given by by the finite sum

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn .

Since the sums are finite, the inner derivative with respect to a vector field, which
is given by an infinite sum v = vi ∂

∂xi
is well-defined. For example, the pairing of v

with the 1-form α is given by the finite sum

ιvα = v1α1 + . . .+ vnαn .

The upshot is that in local coordinates the de Rham calculus is given by the usual
formulas. The difference is that a vector field is generally given by an infinite
sum of partial derivatives. But since functions depend only on a finite number of
coordinates and forms are given by finite sums over products of coordinate 1-forms,
all operations are well-defined.
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Remark 4.3.12. Since the category of dg-algebras has all colimits, it is tempting
to consider the dg-algebra

Ω̄(X̌) ∼= colim
i∈I

Ω(Xi)

rather than the ind-algebra Ω(X̌), which is often the point of view taken in the
literature. However, this creates a number of problems. For example, in Proposi-
tion 4.3.6, we have seen that pro-vector fields are derivations of the algebra C∞(X̌)
in ind-vector spaces. The colimit algebra C̄∞(X̌) in vector spaces has generally
more endomorphisms and more derivations (Remark 4.1.43). For such more gen-
eral derivations the pairing with 1-forms will no longer be defined. Ultimately, it is
the ind/pro-categorical framework that guarantees that the Cartan calculus extends
nicely from smooth manifolds to pro-manifolds.

Exercises

Exercise 4.1. Let I be a category with a terminal object.

(a) Show that I filtered.

(b) Show that the colimit of any diagram D : I→ C exists.

Exercise 4.2. Show that for every filtered category the diagonal functor I→ I× I,
i 7→ (i, i) is final.

Exercise 4.3. Let Φ : I→ J be a final functor. Show that if I is filtered, then J is
filtered.

Exercise 4.4. Let C be the partially ordered set (R,≤), viewed as category. Show
that a functor x : ω → C, n 7→ xn has a colimit y ∈ R if and only if the sequence
of numbers x0, x1, . . . converges to y. (Recall that ω denotes the category 0→ 1→
2→ . . . .)

Exercise 4.5. Let X be a topological space. For every point x ∈ X, let Ux denote
the set of open neighborhoods of x.

(a) View Ux as category where there is a unique morphism U → V if U ⊂ V .
Show that Ux is cofiltered.

(b) Let Y be another topological space. Let Resx : U
op
x → Set be the functor that

maps an object U to Top(U, Y ) and a morphism U → V to the restriction
Top(U, Y )→ Top(V, Y ), f 7→ f |V . Show that the colimit of Resx is the set of
germs of continuous Y -valued functions at x.

Exercise 4.6. Let X̌ be a pro-object represented by the diagram X0
σ0←− X1

σ1←−
X2 ← . . .. Show that the morphism of pro-objects X̌ → X̌ represented by the family
{σi}i∈ω is the identity.

Exercise 4.7. Let X̂ be the strict sequential ind-object of C represented by the
diagram X : ω → C. In Example 4.1.12 we have seen that every unbounded order
preserving map Φ : ω → ω is final, which implies that the ind-object X̂ ′ represented
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by XΦ is isomorphic to X̂. The isomorphism f : X̂ ′ → X̂ is represented by the

family of morphisms X ′i = XΦ(i)
id→ XΦ(i). Find a family of morphisms representing

the inverse of f .

Exercise 4.8. Let X be a vector space. Let SX denote the category that has the
finite dimensional subspaces V ⊂ X as objects and inclusions V ⊂ W as morphisms.
Let Xfin : SX → Vec, (V → X) 7→ V denote the inclusion SX ⊂ Vec as subcategory.

(i) Show that X is the colimit of Xfin.

(ii) Show that SX is filtered.

(iii) Let X̂fin denote the ind-object in Vec represented by the diagram Xfin. Let A
be a vector space. Show that a morphism yA→ X̂fin of ind-vector spaces can
be identified with a linear map A→ X of finite rank.

(iv) Conclude that yX and X̂fin are not isomorphic in Ind(Vec).

Exercise 4.9. Let I : Mfld → Dflg denote the natural inclusion, which maps a
manifold to the smooth diffeology, as in Example 2.1.3 (d). Consider the functor
D : Pro(Mfld)→ Dflg that maps a pro-manifold X̌ represented by X : I→Mfld to
its limit in diffeological spaces,

DX̌ := lim
i∈I

IXi .

(We call DX̌ the pro-manifold diffeology.) Show that there is a natural isomorphism

ProMfld(yM, X̌) ∼= Dflg(IM,DX̌) ,

for all M ∈ Mfld and X̌ ∈ ProMfld. What happens when we replace yM with a
more general pro-manifold?

Exercise 4.10. Let τ : S1 → S1, e2πit 7→ e4πit denote the double cover of the circle.
Consider the sequential pro-manifold X̌ represented by the diagram S1 τ←− S1 τ←−
S1 ← . . .. Let x : ∗ → X̌ be a point (which is given by a sequence xk ∈ S1, k ≥ 0).

(a) Show that a morphism γ : R→ X̌ of pro-manifolds with starting point γ(0) =
x can be identified with a smooth path γ̃ : R→ S1 through some xk = γ̃(0).

(b) Show that a morphism X̌ → R of pro-manifolds can be identified with a
smooth function f : R → R that is 2−k-periodic, f(t) = f(t + 2−k), for some
natural number k ≥ 0.

(c) Show that the fiber of TX̌ at x is isomorphic to the constant pro-vector space
R.

(The exercise illustrates that the definition of tangent vectors by paths and by
derivations both work in the setting of pro-manifolds.)



Chapter 5

Variational cohomology

5.1 De Rham complex of the pro-manifold of infinite jets

Definition 5.1.1. Let F →M be a smooth fiber bundle. The pro-manifold repre-
sented by the sequence

J0F
pr1,0←−− J1F

pr2,1←−− J2F ←−− . . .

will be denoted by J∞F and called the pro-manifold of infinite jets.

The underlying set of J∞F ,

|J∞F | ∼= lim
i∈ω
|J iF | ,

is the set of infinite jets we have defined in Section 3.4. As we have seen in Chapter 3,
the jet manifolds J iF are equipped with more structure. The projection pri,−1 :
J iF →M is a smooth fiber bundle and the forgetful maps pri+1,i are morphisms of
smooth fiber bundles over M , so that we have a commutative diagram

J0F J1F J2F . . .

M M M . . .

pr0,−1 pr1,−1

pr1,0

pr2,−1

pr2,1

id id

This can be viewed as a diagram representing a pro-fiber bundle. Alternatively, the
diagram represents a morphism of pro-manifolds J∞F →M , where M is identified
with the pro-manifold represented by the constant diagram ω →Mfld, i 7→M .

Remark 5.1.2. The forgetful maps prk+1,k : Jk+1F → JkF fit in a commutative
diagram

J1F J2F J3F . . .

J0F J1F J2F . . .

pr1,0 pr2,1 pr3,2

which represents an isomorphism pro-manifolds J∞F → J∞F (see Example 4.2.11).
The diagram also represents a pro-affine bundle. The fiber over a point j∞mφ is the
pro-affine space represented by the sequence

{j0mφ} ×J0F J
1F ←− {j1mφ} ×J1F J

2F ←− {j2mφ} ×J2F J
3F ←− . . .
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An element of {jkmφ}×JkF J
k+1F is given by a (k+1)-jet jk+1

m ψ such that jkmψ = jkmφ,
which shows that the pro-affine space has a single point given by the sequence
j1mφ, j

2
mφ, j

3
mφ, . . .. This is consistent with Proposition 4.1.40, which implies that

the fiber is given by {j∞mφ} ×J∞F J∞F ∼= ∗.

5.1.1 Vertical and horizontal tangent vectors

We have extended the category of manifolds in two different ways. Diffeological
spaces are well suited to describe the differentiable structure of the space of sections
of a smooth fiber bundle. Pro-manifolds are useful to describe differential operators
as morphisms on the infinite jet manifold. We now combine the two approaches and
consider pro-diffeological spaces. The extensions are compatible in the sense that

Mfld Dflg

Pro(Mfld) Pro(Dflg)

is a commutative diagram of categories. The diagonal arrow maps a manifold M
to the presheaf on Dflg given by X 7→ Dflg(X,M), where M is equipped with the
smooth diffeology.

The jet evaluations

F ×M

J0F J1F J2F . . .

j0
j1

j2

can, by Proposition 3.1.14, be viewed as smooth maps of diffeological spaces. By
Proposition 4.2.7, the collection of all jet evaluations represents a morphism of pro-
diffeological spaces.

Definition 5.1.3. The morphism of pro-diffeological spaces

j∞ : F ×M −→ J∞F

represented by the jet evaluations jk : F × M → JkF is called the diffeological
infinite jet evaluation.

The domain of j∞ is the product of two diffeological spaces. By Proposi-
tion 2.2.10, the tangent functor preserves the product,

T (F ×M) ∼= TF × TM . (5.1)

It follows that the tangent fiber at (φ,m) ∈ F × M is the product of TφF ∼=
Γ(F, φ∗V F ) and TmM , which are both vector spaces. We conclude that the tangent
fiber is the product

T(φ,m)(F ×M) ∼= TφF × TmM
∼= TφF ⊕ TmM ,

(5.2)
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which is the same as the direct sum. We will call TφF ∼= Γ(F, φ∗V F ) the vertical
tangent space and TmM the horizontal tangent space.

Globally, we have the decomposition

TF × TM ∼= (TF ×F F)× (M ×M TM)
∼= (TF ×M)×F×M (F × TM) ,

where we have used that products commute with pullbacks. The right hand side
might be viewed as fiber product of bundles of vector spaces over F ×M (Termi-
nology 2.2.6), that is, a generalized Whitney sum (TF ×M)⊕ (F × TM). But we
do not want to overstretch the analogy, since the TF ×M → F ×M does not have
local trivializations.

Since the infinite jet evaluation is a morphism of pro-diffeological spaces, it has
a tangent map

TF × TM TJ∞F

F ×M J∞F

Tj∞

j∞

which is a morphism of bundles of pro-diffeological vector spaces. Over a point
(φ,m), we obtain a morphism of pro-diffeological vector spaces

T(φ,m)j
∞ : TφF ⊕ TmM −→ Tj∞m φJ

∞F , (5.3)

where the codomain is represented by the diagram

Tj0mφJ
0F ←− Tj1mφJ

1F ←− Tj2mφJ
2F ←− . . .

The following theorem states that (5.3) preserves the direct sum and, therefore,
induces a splitting of the tangent bundle of J∞F into a vertical and a horizontal
subbundle.

Theorem 5.1.4. The tangent map of the infinite jet evaluation (5.3) preserves the
direct sum of its domain,

Tj∞(TφF ⊕ TmM) = Tj∞(TφF)⊕ Tj∞(TmM) ,

for all (φ,m) ∈ F×M . If j0 : F×M → F is surjective, then Tj∞ is surjective and
we have the natural isomorphisms

Tj∞(TF ×M) ∼= J∞(V F )

Tj∞(F × TM) ∼= J∞F ×M TM

of bundles over J∞F . This induces a decomposition

TJ∞F ∼= J∞(V F )×J∞F (J∞F ×M TM) (5.4)

into a fiber product of bundles of pro-manifolds over J∞F .
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Proof. The proof is constructive and will yield explicit formulas for the decompo-
sition of the tangent spaces of J∞F . First, we recall from Theorem 2.3.4 that the
tangent bundle of F is given by TF ∼= Γ(M,V F ), so that a tangent vector in TφF
consists of a section ξ of φ∗V F . In local coordinates ξ(m) = ξα(m) ∂

∂uα

∣∣
φ(m)

, where

ξα are local functions onM . There are induced jet coordinates (xi, uαI , u̇
α
I ) on J

kV F ,
where

u̇αI (j
k
mξ) :=

∂|I|ξα

∂xI

∣∣∣
m
,

for |I| ≤ k. The notation is motivated by the jet coordinates of a tangent vector
represented by a path t 7→ φt, which are given by

u̇αI (j
k
mφ̇0) =

d

dt

(
uαI (j

k
mφt)

)
t=0

.

In terms of these jet coordinates we can compute the tangent map of the jet evalu-
ations explicitly.

Every tangent vector on F ×M is represented by a smooth path t 7→ (φt,mt).
As we have seen in Equation (3.7), the coordinates of its k-jet are given by

xi
(
jk(φt,mt)

)
= mi

t

uαI
(
jk(φt,mt)

)
=
∂|I|φt
∂xI

(mt) .

To compute the diffeological tangent map in coordinates, we have to compute the
time derivative of the coordinates of these paths. For the base coordinates we get

d

dt
xi
(
jk(φt,mt)

)∣∣∣
t=0

= ṁi
0 . (5.5)

For the fiber coordinates of we obtain

d

dt
uαI
(
jk(φt,mt)

)∣∣∣
t=0

=
d

dt

(∂|I|φαt
∂xI

(mt)
)
t=0

=
(∂∂|I|φαt
∂t∂xI

(mt) +
∂∂|I|φαt
∂xi∂xI

(mt) ṁ
i
t

)
t=0

=
∂|I|φ̇α0
∂xI

(m0) +
∂|I|+1φα0
∂xI,i

(m0) ṁ
i
0 ,

where we have used the chain rule and that partial derivatives commute. (Recall,
that we are using the summation convention, so that i in the second term is summed
over.) From the last two equations, we read off the tangent map of the k-th jet
evaluation

(T(φ0,m0)j
k)(φ̇0, ṁ0) = ṁi

0

∂

∂xi
+

k∑
|I|=0

(
u̇αI (j

k
m0
φ̇0) + ṁi

0 u
α
I,i(j

k+1
m0

φ0)
) ∂

∂uαI

= u̇αI (j
k
m0
φ̇0)

∂

∂uαI
+ ṁi

0

( ∂

∂xi
+

k∑
|I|=0

uαI,i(j
k+1
m0

φ0)
∂

∂uαI

)
.

(5.6)
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For the infinite jet evaluation, the sum on the right side becomes infinite. Using the
notation ξφ := (φ0, φ̇0) for the tangent vector in TφF and vm := (m0, ṁ0) for the
horizontal tangent vector in TmM , we obtain

(Tj∞)(ξφ, vm) =
∞∑
|I|=0

u̇αI (j
∞
m ξφ)

∂

∂uαI
+ vim

( ∂

∂xi
+

∞∑
|I|=0

uαI,i(j
∞
mφ)

∂

∂uαI

)
. (5.7)

The first term is in the image of TφF, the second term in the image of TmM . Since
only the second term contains ∂

∂xi
, the two summands are linearly independent.

Assume now that j0 is surjective. Every tangent vector ζ ∈ Tj∞m φJ
∞F is of the

form

ζ = vi
∂

∂xi
+

∞∑
|I|=0

ζαI
∂

∂uαI

=
∞∑
|I|=0

(
ζαI − viuαI,i(j∞mφ)

) ∂

∂uαI
+ vi

( ∂

∂xi
+

∞∑
|I|=0

uαI,i(j
∞
mφ)

∂

∂uαI

)
.

(5.8)

By Lemma 3.1.12 and the Whitney extension Theorem 3.3.8, j∞ is surjective. It
follows that there is a section ξφ ∈ Γ(M,φ∗V F ) such that

u̇αI (j
∞
m ξφ) = ζαI − viuαI,i(j∞mφ) .

Let vm = vi ∂
∂xi

. We conclude from (5.7) that (Tj∞)(ξφ, vm) = ζ. This shows that
T(φ,m)j

∞ is surjective.

In order to deduce from the fiber-wise splitting a global splitting of the bundle
TJ∞F → J∞F , we consider Equation (5.6). From the first summand on the right
side, which is linear in φ̇0, we see that the restriction of Tjk to TF ×M factors as

TF ×M

Jk(V F ) TJkF

Tjk|TF×M
jkV F

τk

where jkV F is the k-th jet evaluation of the bundle V F → M , and where τk is the
morphism of fiber-wise linear diffeological bundles given by

τk
(
jkmφ̇0

)
=

d

dt

(
jkmφt

)
t=0

,

for every smooth path t 7→ φt of local sections of F . Since the partial derivatives with
respect to the coordinates of M commute with the time derivative, τk is injective.
We have already shown that jkV F is surjective, which implies that Tjk|TF×M and
τk have the same image. Since τk is injective, we conclude that Tjk(TF ×M) is
isomorphic to Jk(V F ). Since this holds for all k, we obtain an isomorphism of
pro-objects Tjk(TF ×M) ∼= J∞(V F ).
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From the second summand on the right side of Equation (5.6), which is linear in
ṁ0, we see that the restriction of Tjk to F × TM factors as

F × TM

Jk+1F ×M TM TJkF

Tjk|F×TM
βk+1

σk

where βk+1 sends (φ, vm) 7→ (jk+1
m φ, vm) and where σk is a morphism of fiber-wise

linear diffeological bundles given by

σk
(
jk+1
m φ, vm

)
= vim

( ∂

∂xi
+

k∑
|I|=0

uαI,i(j
k+1
m0

φ)
∂

∂uαI

)
.

Since jk+1 is surjective, βk+1 is surjective, so that the commutativity of the diagram
implies that σk has the same image as Tjk|F×TM . However, σk is not injective for
any k, since the right hand side does not depend on uα(jkmφ) = φα(m). To show
that the morphism of pro-objects σ : J∞F ×M TM → TJ∞F is a monomorphism,
we will construct a left inverse of σ. Let

νk := (πJkF , Tprk,−1) : TJ
kF −→ JkF ×M TM(

vim
∂

∂xi
+

k∑
|I|=0

ξαI
∂

∂uαI

)
jkmφ
7−→

(
jkmφ, v

i
m

∂

∂xi

)
,

which defines a morphism of pro-objects ν : TJ∞F → J∞F ×M TM . The compo-
sition ν ◦ σ is represented by the morphisms

νk ◦ σk := Jk+1F ×M TM −→ JkF ×M TM(
jk+1
m φ, vm

)
7−→

(
jkmφ, vm

)
,

that is, νk◦σk = prk+1,k×idTM . It follows from Proposition 4.2.12 that σ is a section
of ν. In particular, σ is a monomorphism. We conclude that σ is an isomorphism
to its image j∞(F × TM).

The family of maps fk := τk ◦ prk+1,k + σk,

fk : J
k+1(V F )×Jk+1F (Jk+1F ×M TM) −→ TJkF ,

represent a morphism

J∞(V F )×J∞F (J∞F ×M TM) −→ TJ∞F .

Let gk : TJ
k+1F → Jk(V F )×M TM be defined by

gk

(( k+1∑
|I|=0

ξαI
∂

∂uαI
+ vim

∂

∂xi

)
jk+1
m φ

)
=
( k∑
|I|=0

(
ξαI − vimuαI,i(jk+1

m φ)
) ∂

∂uαI
, vim

∂

∂xi

)
jkmφ

,
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where we have used that Jk(V F ) ×JkF (JkF ×M TM) ∼= Jk(V F ) ×M TM . The
family gk represents a morphism of pro-manifolds

g : TJ∞F −→ J∞(V F )×J∞F (J∞F ×M TM) .

The composition g ◦ f is represented by the family (g ◦ f)k = gk ◦ fk+1. In local
coordinates this map is given by

(gk ◦ fk+1)

(( k+2∑
|I|=0

ξαI
∂

∂uαI
, vim

∂

∂xi

)
jk+2
m φ

)
=
( k∑
|I|=0

ξαI
∂

∂uαI
, vim

∂

∂xi

)
jkmφ

,

that is, (g ◦f)k = Tprk+2,k× idTM . It follows that g ◦f is the identity morphism. In
a similar way, we can show that fk ◦ gk+1 represents the identity morphism as well.
We conclude that f is an isomorphism.

Warning 5.1.5. The morphisms fk that represent the splitting f of the pro-vector
bundle TJ∞F → J∞F are surjective but not injective, so that fk does not induce
a splitting of TJkF → JkF for any k <∞. This is one of the reasons why we have
to work with the infinite jet bundle.

Terminology 5.1.6. J∞(V F ) ↪→ TJ∞F is called the vertical tangent bundle and
J∞F ×M TM ↪→ TJ∞F the horizontal tangent bundle of J∞F . A tangent vector
v : ∗ → TJ∞F is called vertical, if it factors as ∗ → J∞(V F ) → TJ∞F through
the vertical tangent bundle. Analogously, v is called horizontal if it factors as
∗ → J∞F ×M TM → TJ∞F through the horizontal tangent bundle. A vector field
is called vertical (horizontal) if all its values are.

Remark 5.1.7. The inclusion of the horizontal subbundle J∞F ×M TM → TJ∞F
is a section of the map

(πJ∞F , Tpr∞,−1) : TJ
∞F −→ J∞F ×M TM ,

so that it can be interpreted as the horizontal lift of a connection on TJ∞F → J∞F ,
which is called the Cartan connection.

Remark 5.1.8. A vector v ∈ TjkmφJ
kF is in the image fk(J

k+1F ×M TM) of the
(k + 1)-level of the horizontal tangent bundle if and only if there is a local section
ψ such that v = (Tmj

kψ)Xm for some Xm ∈ TM . (This implies that jkmψ = jkmφ,
but v will generally depend on the (k + 1)-jet of ψ.) In other words, the Cartan
distribution is given by the vectors that are tangent to the image of a holonomic
section of J∞F →M (Terminology 3.1.17).

As corollary to Theorem 5.1.4 we obtain the following statement.

Corollary 5.1.9. The vector space of vector fields on J∞F decomposes into the
direct sum

X(J∞F ) ∼= Xvert(J
∞F )⊕ Xhor(J

∞F ) (5.9)

of the spaces of vertical and horizontal vector fields. Moreover, we have the natural
isomorphisms of vector spaces

Xvert(J
∞F ) ∼= Γ

(
J∞F, J∞(V F )

)
Xhor(J

∞F ) ∼= Hom(J∞F, TM) .
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Corollary 5.1.9 means that every vector field v ∈ X(J∞F ) has a unique decom-
position v = vvert + vhor into a vertical and a horizontal vector field. In local jet
coordinates a vector field v ∈ X(J∞F ) has the form

v = vi
∂

∂xi
+

∞∑
|I|=0

vαI
∂

∂uαI
, (5.10)

where the components vi and vαI are functions on J∞F , which means that each
component is given by a smooth function on a finite jet manifold. The decomposition
of v was computed in Equation (5.8). The horizontal component is

vhor = viDi ,

where

Di :=
∂

∂xi
+

∞∑
|I|=0

uαI,i
∂

∂uαI
. (5.11)

The vertical component vvert = v − vhor is given by

vvert =
∞∑
|I|=0

(vαI − viuαI,i)
∂

∂uαI
.

Since vαI and vi are arbitrary, a vertical vector field is of the general form
∑∞
|I|=0 ξ

α
I

∂
∂uαI

with arbitrary coefficient functions ξαI ∈ C∞(J∞F ).

Remark 5.1.10. Let f ∈ C∞(JkF ) be a smooth function. Then Dif is a function
defined on a local coordinate neighborhood of Jk+1F . When we evaluate it at a jet
represented by a local section φ, we obtain

(Dif)(j
k+1
x φ) =

∂f

∂xi
(jkxφ) +

k∑
|I|=0

(
∂

∂xi
∂|I|φα

∂xI

)
∂f

∂uαI
(jkxφ)

=
∂

∂xi
(f ◦ jkφ)

∣∣
x
.

(5.12)

In other words, Di acts on holonomic sections of the jet bundle as the partial deriva-
tive with respect to xi.

Remark 5.1.11. The space of vertical vector fields is involutive, i.e. closed under
the Lie bracket. A straightforward calculation shows that [Di, Dj] = 0, which implies
that the space of horizontal vector fields is involutive, as well. In other words, the
Cartan connection is flat.

5.1.2 The variational bicomplex

The splitting of the bundle of pro-manifolds TJ∞F → J∞F proved in Theorem 5.1.4
induces a splitting of the ind-vector space of 1-forms as follows.

Let gk : TJk+1F → Jk(V F ) ×JkF (JkF ×M TM) be the morphisms of vector
bundles defined in the proof of Theorem 5.1.4 that represent the splitting (5.4). The
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dual of the vector bundle Jk(V F )→ JkF is given by Jk(V ∗F ), where V ∗F → F is
the dual bundle of V F → F . The dual of the vector bundle JkF ×M TM → JkF is
given by JkF ×M T ∗M . The pullback of sections is

g∗k : Γ
(
JkF, Jk(V ∗F )

)
⊕ Γ

(
JkF, JkF ×M T ∗M

)
−→ Ω1(Jk+1F ) .

Since the family of morphisms gk represents an isomorphism of pro-vector bundles,
the pullbacks g∗k represent an isomorphism of ind-vector spaces,

Ω(J∞F ) ∼= Γ
(
J∞F, J∞(V ∗F )

)
⊕ Γ

(
J∞F, J∞F ×M T ∗M

)
.

The maps gk are surjective but not injective. Therefore, g∗k is injective but not
surjective, so that g∗k does not induce a splitting of Ω1(Jk+1F ) for any k ≥ 0. This
is the dual statement to what we have pointed out in Warning 5.1.5 for the tangent
bundles. But since g∗k is injective, we can identify the two summands of the domain
of g∗k with their images under g∗k in Ω1(JkF ).

Definition 5.1.12. The vector spaces

Ω1,0(Jk+1F ) := g∗k Γ
(
JkF, Jk(V ∗F )

)
Ω0,1(Jk+1F ) := g∗k Γ(J

kF, JkF ×M T ∗M) .

for all k ≥ 0 are the vector spaces of vertical and horizontal 1-forms.

The subspace of (p, q)-forms is given by

Ωp,q(Jk+1F ) = g∗k Γ
(
JkF,∧pJk(V ∗F )×JkF (JkF ×M ∧qT ∗M)

)
= g∗k Γ

(
JkF,∧pJk(V ∗F )×M ∧qT ∗M)

)
.

(5.13)

We point out once more that Ω1,0(JkF ) ⊕ Ω0,1(JkF ) is a proper subspace of
Ω1(JkF ) for every k > 0, so that⊕

m=p+q

Ωp,q(JkF ) ⊊ Ωm(JkF ) .

In other words, there is no natural splitting of the space of 1-forms and no natural
bigrading of the space of forms on any of the finite jet manifolds JkF . For the
ind-vector space Ωp,q(J∞F ) that is represented by the sequence

Ωp,q(J1F ) ⊂ Ωp,q(J2F ) ⊂ . . . ,

we have the decomposition

Ωm(J∞F ) ∼=
⊕
m=p+q

Ωp,q(J∞F ) . (5.14)

For calculations we need to determine the local coordinate expression of (p, q)-forms.
We begin with the following observation.

Lemma 5.1.13. A 1-form µ ∈ Ω1(J∞F ) is vertical if and only if ιvµ = 0 for all
v ∈ Xhor(J

∞F ). It is horizontal if and only if ιvµ = 0 for all v ∈ Xvert(J
∞F ).
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Proof. This follows from the non-degeneracy of the pairing of vector fields and 1-
forms on J∞F .

Lemma 5.1.13 can be used to compute the local form of vertical and horizontal
1-forms in jet coordinates. Let d denote the de Rham differential of Ω(Jk+1F ). A
1-form µ ∈ Ω(Jk+1F ) is given locally by

µ = µidx
i +

k+1∑
|I|=0

µIαdu
α
I , (5.15)

where we have written out the sum to emphasize that it is finite. As C∞(J∞F )-
module, Xhor(J

∞F ) is locally spanned by the basis of horizontal vector fields {Di}
defined in Equation (5.11). The condition for µ to be vertical is therefore

0 = ιDi
µ = µi +

k+1∑
|I|=0

uαI,iµ
α
I .

We can write this condition as

µi +
k∑
|I|=0

uαI,iµ
α
I = −

∑
|I|=k+1

uαI,iµ
α
I .

The left side does only depend on jet coordinates up to order k+1, whereas the right
side also depends linearly on the jet coordinates of order k + 2. Since the equation
must hold for all values of jet coordinates of order k + 2, it follows that both sides
must vanish independently. The right side vanishes if µαI = 0 for |I| = k + 1. The
vanishing of the left side yields an expression for µi in terms of µαI . We conclude
that µ is vertical if and only if it is of the local form

µ =
k∑
|I|=0

µαI (du
α
I − uαI,idxi) = µαI θ

I
α ,

where
θαI := duαI − uαI,idxi .

The 1-forms θIα ∈ Ω1(J |I|+1F ) are linearly independent at every point, so that they
are a local basis of the C∞(J |I|+1F )-module Ω1,0(J |I|+1F ).

Terminology 5.1.14. In the language of variational calculus, the 1-forms θIα are
called contact forms.

As C∞(J∞F )-module, Xvert(J
∞F ) is locally spanned by the infinite sums of the

vertical coordinate vector fields { ∂
∂uαI
}. This shows that the conditions

0 = ι ∂
∂uα

I

µ = µIα

for µ to be horizontal are satisfied if and only if µ is of the form µ = µidx
i. We

have shown the following.
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Lemma 5.1.15. A local 1-form µ ∈ Ω1(J∞F ) given in local coordinates by Equa-
tion (5.15) decomposes as µ = µvert+µhor into its vertical and horizontal components

µvert = µIαθ
α
I , µhor = (µi + µIαu

α
I,i)dx

i . (5.16)

A form ω ∈ Ωp,q(J∞F ) is given in local coordinates by a finite sum

ω = ω
I1,...,Ip
α1,...αp,j1,...,jq

θα1
I1
∧ . . . ∧ θαp

Ip
∧ dxj1 ∧ . . . ∧ dxjq ,

where the coefficients ω
I1,...,Ip
α1,...αp,j1,...,jq

are functions in C∞(J∞F ).
Let prΩp,q : Ω(J∞F ) → Ωp,q(J∞F ) denote the projection onto the vector space

of (p, q)-forms. The vertical component δ and the horizontal component d of the
differential d are given by the linear maps

δp,q : Ωp,q(J∞F ) −→ Ωp+1,q(J∞F ) , δp,q := prΩp,q+1 ◦ d|Ωp,q ,

dp,q : Ωp,q(J∞F ) −→ Ωp,q+1(J∞F ) , dp,q := prΩp,q+1 ◦ d|Ωp,q .

Proposition 5.1.16. The bigraded vector space with the vertical differential δ and
the horizontal differential d is a differential bicomplex.

Proof. This is a standard argument. We must show that d = δ + d which implies
that δ2 = 0, d2 = 0, and δd = −dδ. For d acting on functions this is clear by
definition. For d|Ω0,1 we have

d|Ω0,1 = (prΩ2,0 + prΩ1,1 + prΩ0,2) ◦ d|Ω0,1

= prΩ2,0 ◦ d|Ω0,1 + δ + d ,

so we have to show that prΩ2,0 ◦ d|Ω0,1 = 0. Let µ ∈ Ω0,1(J∞F ). Evaluated on two
vertical vector fields v, w ∈ X(J∞F )vert the differential can be written as

(dµ)(v, w) = v · µ(w)− w · µ(v)− µ([v, w])
= −µ([v, w]) ,

where we have used that µ(v) = 0 = µ(w) because µ is horizontal and v, w vertical.
We see that prΩ2,0 ◦ d|Ω0,1 = 0 if and only if X(J∞F )vert is involutive. Analogously,
prΩ0,2 ◦ d|Ω0,1 = 0 if and only if X(J∞F )hor is involutive. The spaces of vertical and
horizontal vector fields are both involutive (Remark 5.1.11), so that dω = δω + dω
for an arbitrary 1-form ω. Since functions and 1-forms generate the graded algebra
Ω(J∞F ), it follows that d = δ + d.

We can depict the variational bicomplex by the diagram

...
...

...

Ω1,0(J∞F )

δ

OO

d // Ω1,1(J∞F )

δ

OO

d // · · · d // Ω1,n(J∞F )

δ

OO

Ω0,0(J∞F )

δ

OO

d // Ω0,1(J∞F )

δ

OO

d // · · · d // Ω0,n(J∞F )

δ

OO

(5.17)

where n = dimM .
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Terminology 5.1.17. The vertical differential δ is also called the variation. The
horizontal differential d is also called the spacetime differential.

Let us compute the differentials in local coordinates. From Equation (5.16) we
get

δxi = (dxi)vert = 0

dxi = (dxi)hor = dxi

δuαI = (duαI )vert = θαI

duαI = (duαI )hor = uαI,idx
i .

For a function f ∈ Ω0,0(J∞F ) we thus obtain

δf =
( ∂f
∂xi

dxi +
∂f

∂uαI
duαI

)
vert

=
∂f

∂uαI
δuαI , (5.18a)

df =
( ∂f
∂xi

dxi +
∂f

∂uαI
duαI

)
hor

=
∂f

∂xi
dxi + uαI,i

∂f

∂uαI
dxi = (Dif) dx

i . (5.18b)

Using the relations δ2 = 0, d2 = 0, and δd = −dδ, we can easily compute the
differentials of the coordinate 1-forms,

δ(dxi) = −dδxi = 0

d(dxi) = 0

δ(δuαI ) = 0

d(δuαI ) = −δ(duαI ) = −δ(uαI,idxi) = −δuαI,i ∧ dxi .

Using the formulas for the differentials of functions and coordinate 1-forms, as well
as the fact that δ and d are derivations, we can compute the differentials of an
arbitrary form ω ∈ Ωp,q(J∞F ), which can be expressed in local coordinates as

ω = ω
I1...Ip
α1...αpi1...iq

δuα1
I1
∧ . . . ∧ δuαp

Ip
∧ dxi1 ∧ . . . ∧ dxiq . (5.19)

Here the coefficients ω
I1...Ip
α1...αpi1...iq

are functions on J∞F . Note that the sum is finite,
that is, there is a k such that the terms vanish for |I| > k.

The inner derivatives of the differentials with respect to the coordinate vector
fields are

ι ∂

∂xj
dxi = δij

ι ∂

∂u
β
J

dxi = 0

ι ∂

∂xj
δuαI = −uαI,j

ι ∂

∂u
β
J

δuαI = δαβ δ
J
I .

5.1.3 Strictly vertical and horizontal vector fields

We have seen in Section 5.1.2 that the product structure of F×M induces a splitting
of the tangent bundle of J∞F into a horizontal and vertical subspace. The product
structure F ×M enables us also to lift vector fields on F and vector fields on M to
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vector fields on F ×M by using the trivial connection of the bundles F ×M → F

and F ×M → M , respectively. On finite-dimensional manifolds such lifts can be
characterized infinitesimally as follows.

Proposition 5.1.18. Let X × Y be a product of manifolds. Let dX and dY be the
differentials of the bicomplex Ω(X × Y ). A vector field v ∈ X(X × Y ) is the lift of
a vector field on X if and only if [ιv, dY ] = 0.

Proof. In local coordinates (x1, . . . , xp, y1, . . . , yq) a vector field v is of the form

v = ai(x, y)
∂

∂xi
+ bi(x, y)

∂

∂yi
,

which is the lift of a vector field on X if and only if the functions ∂ai

∂yk
= 0 and bi = 0.

For any function f ∈ C∞(X × Y ) we have

[ιv, dY ]f = ιvdY f = bi
∂f

∂yi
.

This shows that [ιv, dY ]f = 0 for all functions f if and only if bi = 0. For a 1-form
µ = αi(x, y)dx

i + βi(x, y)dy
i we have

[ιv, dY ]µ = (ιvdY + dY ιv)µ

= ιv

(∂αi
∂yj

dyj ∧ dxi + ∂βi
∂yj

dyj ∧ dyi
)
+ dY (a

iαi + biβi)

=
(∂αi
∂yj

(bjdxi − aidyj) + ∂βi
∂yj

(bjdyi − bidyj)
)

+
(∂ai
∂yj

αi + ai
∂αi
∂yj

+
∂bi

∂yj
βi + bi

∂βi
∂yj

)
dyj

=
∂ai

∂yj
αidy

j +
(∂αi
∂yj

bjdxi − ∂βj
∂yi

bidyj +
∂bi

∂yj
βidy

j
)
.

The first term vanishes for all 1-forms µ if and only if ai does not depend on the yi.
The second term vanishes if and only if bi = 0.

We conclude that v is a lift of a vector field on X if and only if [iv, dY ] annihilates
all functions and 1-forms. Since functions and 1-forms generate Ω(X × Y ) as R-
algebra and since [ιv, dY ] is a derivation, this is the case if and only if [ιv, dY ] = 0.

Definition 5.1.19. A vector field v ∈ X(J∞F ) will be called strictly vertical if
[ιv, d] = 0 and strictly horizontal if [ιv, δ] = 0.

Remark 5.1.20. A strictly vertical vector field v satisfies ιvdx
α = [ιv, d]x

α = 0,
which shows that it is vertical. Analogously, a strictly horizontal vector field v
satisfies ιvδu

α
I = [ιv, δ]u

α
I = 0, which shows that it is horizontal.

Proposition 5.1.21. For all strictly vertical vector fields ξ and ξ′, we have the
following graded Lie brackets:

[ιξ, δ] = Lξ , [Lξ, ιξ′ ] = ι[ξ,ξ′] , [Lξ,Lξ′ ] = L[ξ,ξ′] ,

[δ, δ] = [ιξ, ιξ′ ] = [Lξ, δ] = 0 ,
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For all strictly horizontal vector fields X, X ′, we have

[ιX , d] = LX , [LX , ιX′ ] = ι[X,X′] , [LX ,LX′ ] = L[X,X′] ,

[d, d] = [ιX , ιX′ ] = [LX , d] = 0 .

Moreover, we have the relations

[δ, d] = [δ, ιX ] = [δ,LX ] = 0

[ιξ, d] = [ιξ, ιX ] = [ιξ,LX ] = 0

[Lξ, d] = [Lξ, ιX ] = [Lξ,LX ] = 0 .

In other words, we have two commuting Cartan calculi, the vertical and the horizon-
tal Cartan calculus on Ω(J∞F ), each satisfying the relations of Proposition 4.3.10.

Proof. The relations follow directly from the relations of Proposition 4.3.10, from the
fact that we have a bicomplex (Proposition 5.1.16), and from the Definition 5.1.19
of strictly vertical and horizontal vector fields.

Lemma 5.1.22. A vector field v ∈ X(J∞F ) is strictly horizontal if and only if it is
of the local form

v = vi(x)Di ,

for smooth functions vi ∈ C∞(M).

Proof. Since [ιv, δ] is a derivation, it is zero if it vanishes on functions f and the
coordinate 1-forms dxi and δuαi , which generate the algebra Ω(J∞F ) locally. In
local coordinates, v is given by Equation (5.10), so we obtain

[ιv, δ]f = ιv
∂f

∂uαI
δuαI

=
∂f

∂uαI
(vαI − uαI,ivi) ,

where we have used that δuαI = θαI = duαI − uαI,idxi. This vanishes for all functions
if and only if vαI = uαI,iv

i, i.e. if and only if v is of the form

v = vi
∂

∂xi
+ uαI,iv

i ∂

∂uαI
= viDi ,

which means that v is horizontal. Next, we obtain

[ιv, δ]dx
i = ιvδdx

i + διvdx
i

=
∂vi

∂uαI
δuαI ,

which vanishes if and only if vi does not depend on the fiber coordinates uαI . Finally,
we get

[ιv, δ]δu
α
I = διvu

α
I + δ(ιvδu

α
I ) ,

which vanishes when v is horizontal such that the expression in parentheses van-
ishes. This shows that the last equation does not yield an additional condition. We
conclude that v is strictly horizontal if it is horizontal with the coefficient functions
vi depending only on the base coordinates xi.
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Conceptually, strictly horizontal vector fields in X(J∞F ) play the role of the lifts
of vector fields onM to vector fields on F×M . In fact, the strictly horizontal vector
fields are the lifts

X(M) −→ X(J∞F )

vi(x)
∂

∂xi
7−→ vi(x)Di .

of vector fields on M by the Cartan connection. An analogous interpretation of
strictly vertical vector fields is not possible, since J∞F is not a bundle over F.

5.1.4 Equivalence of strictly vertical and local vector fields

In Theorem 2.3.4, we have shown that TF ∼= Γ(M,V F ). A vector field on F is given
by a map

ξ : Γ(M,F ) −→ Γ(M,V F ) ,

such that (πF )∗ξ = idF, where πF : V F → F is the bundle projection. Since
ξ is a map of fields, it makes sense to talk about local vector fields in the sense
of Definition 3.2.1, a local vector field ξ : F → TF descends to a smooth map
v0 : J

kF → V F covering the identity on M , such that the diagram

F ×M TF ×M

JkF V F

ξ×idM

jkF j0V F

v0

commutes. Since (πF )∗ξ = idF, the map v0 covers the identity on F .

Terminology 5.1.23 (). A smooth map v0 : J
kF → V F , for some k, covering the

identity of F is called an evolutionary “vector field”. Since there is no coordinate
independent lift V F → TJkF , it cannot be viewed as vector field on JkF , which is
why we put quotes around “vector field”.

Remark 5.1.24. Every evolutionary “vector field” v0 : J
kF → V F induces a local

vector field ξ on F given by ξφ := v0 ◦ jkφ for all φ ∈ F.

In order to view a local vector field on F as a vector field on J∞F , we have to
prolong the corresponding evolutionary “vector field” v0 : J

kF → V F to the map

vl : J
k+lF

ιl,k−−−→ J l(JkF )
J lv0−−−→ J lV F

τl−−→ TJ lF , (5.20)

where ιl,k is the embedding (3.9) of Lemma 3.1.26, where J lv0 : J l(Jk) → J lV F is
the l-th prolongation of v0 defined in Proposition 3.1.19, and where τl is the map
defined in the proof of Theorem 5.1.4.

Proposition 5.1.25. Let v0 : J
kF → V F be a smooth map covering the identity of

F , that is, an evolutionary “vector field”. Then the smooth maps vl : J
k+lF → TJ lF

of (5.20) represent a vector field v : J∞F → TJ∞F , which is called the infinite
prolongation of v0.
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Proof. We have the following row of commutative squares

Jk+l+1F J l+1(JkF ) J l+1V F TJ l+1F

Jk+lF J l(JkF ) J lV F TJ lF

ιl+1,k jl+1v0 τl+1

Tprl+1,l

ιl,k jlv0
τl

where the unmarked vertical arrows are the obvious forgetful maps. The commuta-
tivity of the outer rectangle shows that the prolongations vl represent a morphism
v : J∞F → TJ∞F of pro-manifolds.

In order to show that v is a section of TJ∞F → J∞F we consider the following
diagram:

Jk+lF J l(JkF ) J lV F TJ lF

J lF J lF J lF J lF

ιl,k

prk+l,l

J lv0

J lprk,0

τl

J lπF
π
JlF

id id id

It follows from the definition of ιl,k in Lemma 3.1.26 that the first square commutes.
By assumption, v0 covers the identity, πF ◦ v0 = prk,0. By applying the l-th prolon-
gation functor we obtain J lπF ◦ J lv0 = J lprk,0, which is the commutativity of the
second square. The commutativity of the third square follows from the definition of
τl. We conclude that the outer rectangle commutes, that is,

πJ lF ◦ vl = prk+l,l .

It follows from Proposition 4.3.4 that the maps vl represent a section of TJ∞F →
J∞F .

Theorem 5.1.26. Let F →M be a smooth fiber bundle. Let v : J∞F → TJ∞F be
a vector field on the pro-manifold J∞F . The following are equivalent:

(i) v is strictly vertical.

(ii) v is the infinite prolongation of an evolutionary “vector field”.

(iii) There is a unique local vector field on F that projects to v.

The situation of Theorem 5.1.26 can be summarized in the following diagram of
pro-diffeological spaces:

F ×M TF ×M

J∞F J∞(V F )

JkF V F

ξ×idM

j∞F j∞V F

v

v0
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Here, we have used that a vertical vector field v : J∞F → TJ∞F takes its values
in the vertical tangent space J∞(V F ) ↪→ TJ∞F as defined in Theorem 5.1.4. The-
orem 5.1.26 states that given a strictly vertical vector field v, there is a unique ξ
that makes this diagram commutative. The map v0 is not determined uniquely by
v. It is unique only if we require the jet order k to be minimal. In general, a local
vector field ξ does not determine v or v0 uniquely. In fact, if F = ∅, then any v0
and its prolongation v will make the diagram commutative. If we assume the jet
evaluations to be surjective (see Lemma 3.1.12), then v is uniquely determined by ξ
if we require k to be minimal. The proof of Theorem 5.1.26 relies on the following
technical lemmas.

Notation 5.1.27. For every multi-index I = (I1, . . . , In) and n = dimM , we denote

DI := DI1
1 D

I2
2 · · ·DIn

n .

In particular, Di1,...,ik = Di1 · · ·Dik .

Lemma 5.1.28. A vector field v ∈ X(J∞F ) is strictly vertical if and only if it is of
the form

v =
∞∑
|I|=0

(DIv
α)

∂

∂uαI
,

for some functions vα ∈ C∞(J∞F ).

Proof. Let v =
∑∞
|I|=0 v

α
I

∂
∂uαI

be an arbitrary vector field on J∞F . Locally, the vari-

ational bicomplex is generated by the coordinate functions xi, uαI and the coordinate
1-forms dxi, δuαI . The operator [ιv, d] is a derivation, so that it suffices to check the
relation [ιv, d] = 0 on the generators. On xi we obtain the condition

[ιv, d]x
i = ιvdx

i = vi = 0 ,

so that v must be vertical, as already noted. On uαI we obtain [ιv, d]u
α
I = ιvdu

α
I =

ιvu
α
I,idx

i = uαIiv
i = 0, which follows from the first condition. On the horizontal

coordinate one forms we have [ιv, d]dx
i = dιvdx

i = dvi = 0 which also follows from
the first equation. On the vertical coordinate 1-forms we get

[ιv, d]δu
α
I = ιvdδu

α
I + d(ιvδu

α
I )

= ιv(−δuαI,i ∧ dxi) + dvαI

= −vαI,i dxi + viδuαI,i + (Div
α
I ) dx

i .

Assuming that vi = 0 we obtain the condition

vαI,i = Div
α
I .

By induction, this implies that vαi1,...,in = Di1 · · ·Dinv
α = Di1,...ikv

α. This proves the
lemma.
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Lemma 5.1.29. Let f : F → F̃ be a map of smooth fiber bundles over M covering
the identity of M . Let xi be local coordinates on a neighborhood U of m ∈ M , uα

fiber coordinates of F , and ũβ fiber coordinates of F̃ , both over U . Then the k-th
prolongation Jkf : JkF → JkF̃ is given in the induced jet bundle coordinates by

fβI = DIf
β ,

for all multi-indices I with |I| ≤ k, where fβI = ũβI ◦ Jkf .

Proof. In Proposition 3.1.19 the k-th prolongation Jkf was defined as the map that
sends jkmφ to jkm(f ◦ φ). In local coordinates we have

(ũβi1,...,il ◦ J
kf)(jkxφ) = ũβi1,...,il

(
(Jkf)(jkxφ)

)
= ũβi1,...,il

(
jkx(f ◦ φ)

)
=

∂l(fβ ◦ φ)
∂xi1 · · · ∂xil

=
∂l−1

∂xi1 · · · ∂xil−1

∂(fβ ◦ φ)
∂xil

=
∂l−1

∂xi1 · · · ∂xil−1

[
(Dilf

β) ◦ j1φ
]

=
∂l−2

∂xi1 · · · ∂xil−2

[
(Dil−1

Dilf
β) ◦ j2φ

]
= (Di1 · · ·Dilf

β)(jlxφ) ,

where in the last step we have repeatedly applied Equation (5.12). Note, that while
the right side depends only on the l-jet of φ, it can be viewed as function on the
k-jet.

Lemma 5.1.30. Let ξ : F → TF be a local vector field that descends to a smooth
map v0 : J

kF → V F . Then ξ projects to the infinite prolongation v : J∞F → TJ∞F
of v0.

Proof. Since v0 is an evolutionary “vector field”(Terminology 5.1.23), it covers the
identity of F . Moreover, as we have noted in Remark ??, ξ is given in terms of v0
by the relation

ξφ(m) = v0(j
k
mφ) , (5.21)

for all (φ,m) ∈ F ×M . Let ξφ ∈ TφF be represented by the path t 7→ φt in F,
i.e. ξφ = φ̇0. Then the tangent map of jl : Γ(M,V F )→ V F is given by

(Tjl)(ξφ,m) = (Tjl)(φ̇0,m) =
d

dt
(jlmφt)

∣∣∣
t=0

= τl(j
l
mφ̇0) = τl(j

l
mξφ)

= τl
(
jlm(v0 ◦ jkφ)

)
=
(
τl ◦ J lv0 ◦ jl(jkφ)

)
(m)

=
(
τl ◦ J lv0 ◦ ιl,k ◦ jk+l)(φ,m)

= vl(j
k+l
m φ) ,
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where we have used the definition of τl from the proof of Theorem 5.1.4 and the
definition of ιl,k from Lemma 3.1.26. This shows that the diagram

F ×M TF ×M

Jk+lF TJ lF

ξ×idM

jk+l Tjl

vl

commutes for all l ≥ 0. We conclude that ξ descends to the vector field on J∞F
that is represented by the prolongations vl.

Proof of Theorem 5.1.26. Let v0 : JkF → V F be an evolutionary “vector field”
given in local bundle coordinates by v0 = vα0

∂
∂uα

. It follows from Lemma 5.1.29
that the infinite prolongation v =

∑∞
|I|=0 v

α
I

∂
∂uαI

of v0 is given by vαI = DIv
α
0 .

Lemma 5.1.28 now implies that (i) and (ii) are equivalent.
Let ξ : F → TF, ξ 7→ ξφ be a local vector field that descends to the smooth map

v0 : JkF → V F , that is, to an evolutionary “vector field” (Terminology 5.1.23).
Conversely, we have noted in Remark 5.1.24 that for every evolutionary “vector
field” v0, there is a unique vector field ξ on F that descends to v0. Moreover, we
have shown in Lemma 5.1.30 that ξ projects to the infinite prolongation of v0. We
conclude that (ii) and (iii) are equivalent.

5.1.5 Basic forms

Definition 5.1.31. A differential form ω ∈ Ω(J∞F ) is called horizontal if ιξω = 0
for all vertical vector fields ξ ∈ X(J∞F ). It is called vertically invariant if Lξω = 0
for all vertical vector fields ξ. A form that is horizontal and vertically invariant is
called basic.

Proposition 5.1.32. A differential form ω ∈ Ω(J∞F ) is basic if and only if it is
the pullback of a form on the base manifold M by the projection J∞F →M .

Proof. Let ω ∈ Ω0,q(J∞F ) be a horizontal form. In local coordinates we have
ω = ωi1,...,iq dx

i1 ∧ . . .∧ dxiq , where the ωi1,...,iq are functions on J∞F . For the action
of the Lie derivative with respect to a vertical coordinate vector field we get

L ∂
∂uα

I

ω =
∂

∂uαI
−7 (d+ δ)ω

=
∂

∂uαI
−7
(
(Djωi1,...,iq)dx

j ∧ dxi1 ∧ . . . dxiq

+
∞∑
|J |=0

∂|J |ωi1,...,iq

∂uβJ
δuβJ ∧ dx

i1 ∧ . . . dxiq
)

=
∂|I|ωi1,...,iq

∂uαI
dxi1 ∧ . . . ∧ dxiq .

We conclude that, in local coordinates, ω = ωi1,...,iq(x) dx
i1 ∧ . . . ∧ dxiq , that is, ω is

the pullback of a form on M . For a general vertical vector field ξ =
∑∞
|I|=0 ξ

α
I

∂
∂uαI

,
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we have Lξω = ιξdω =
∑k+1
|I|=0 ξ

α
I (

∂
∂uαI
−7 dω) = 0, where k is the maximal jet order

of the coefficient functions.

Remark 5.1.33. We can define a form ω ∈ Ω(J∞F ) to be horizontally basic if
ιvω = 0 and Lvω = 0 for all horizontal vector fields v ∈ X(J∞F ). However, it turns
out that this condition is only satisfied by locally constant functions, so that it is
not a useful concept.

5.2 Cohomology of the variational bicomplex

In our setup, the variational bicomplex consists of a bigraded commutative ind-
algebra Ω(J∞F ) with the vertical and horizontal derivations δ, which are elements
of the graded Lie algebra of internal derivations Der(Ω(J∞F )). In cohomology,
it is more common to view the ind-bigraded algebra, which is represented by the
sequence Ω(J0F )→ Ω(J1F )→ Ω(J2F )→ . . ., as filtration

Ω(J0F ) ⊂ Ω(J1F ) ⊂ Ω(J2F ) ⊂ . . . ⊂ Ω̄(J∞F ) ,

of bigraded algebras, where

Ω̄(J∞F ) := colim
k∈ω

Ω(JkF )

is the colimit in bigraded algebras. The multiplication of the algebra satisfies

Ω(JkF ) Ω(J lF ) ⊂ Ω(Jmax(j,l)F ) ,

and the differentials satisfy

δΩp,q(JkF ) ⊂ Ωp+1,q(JkF ) , dΩp,q(JkF ) ⊂ Ωp,q+1(Jk+1F ) ,

as can be deduced from the local coordinate expressions for δ and d. Viewing the
variational ind-bicomplex as filtered bicomplex allows us to apply the method of
spectral sequences without modification, although we will need only a very simple
version of it.

5.2.1 Cohomological partial integration

Let α, β ∈ Ω(M) be compactly supported differential forms, such that dα ∧ β ∈
Ωn(M) is a form of degree n = dimM that can be integrated over M . Then
d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ, so that by Stokes’ theorem∫

M

dα ∧ β = −
∫
M

(−1)|α|α ∧ dβ +

∫
∂M

α ∧ β .

If ∂M = 0, then the second term on the right side vanishes, so that we obtain the
coordinate free version of partial integration. The procedure does not depend on
taking the integrals and can be stated in terms of the integrands as

[dα ∧ β] = −[(−1)|α|α ∧ dβ] ,



146 5. Variational cohomology

where the brackets denote the cohomology classes. This formula, which holds for
forms with arbitrary support and in all degrees, can be viewed as cohomological
version of partial integration. It generalizes to the d-cohomology classes of the
variational bicomplex and is an important step in the computation of its horizontal
cohomology classes.

Using the local coordinate formulas for d, we get

LDi
δuαI = (ιDi

d+ dιDi
)δuαI = ιDi

(−δuαI,j ∧ dxj)
= δuαI,i .

(5.22)

From Equation (5.22) we deduce the formula

δuαI = LDI
δuα .

A form ω ∈ Ωp,n(J∞F ) for p > 0 can be written locally as

ω = δuαI ∧ τ Iα ,

where the (p− 1, n)-forms τ Iα are given by

τ Iα =
1

p

( ∂

∂uαI
−7 ω
)
, (5.23)

Using the derivation property of the Lie derivative we get

δuαi1,...,ik ∧ τ
i1,...,ik
α = (LDik

δuαi1,...,ik−1
) ∧ τ i1,...,ikα

= −δuαi1,...,ik−1
∧ LDik

τ i1,...,ikα + LDik
(δuαi1,...,ik−1

∧ τ i1,...,ikα ) ,
(5.24)

where there is no summation over repeated indices. Since τ Iα is of top horizontal
degree, the second term on the right side is exact, so that Equation (5.24) can be
viewed as a cohomological version of partial integration. Applying Equation (5.24)
recursively to the first term on the right side, we obtain

δuαi1,...,ik ∧ τ
i1,...,ik
α = δuα ∧ (−1)k(LDi1

· · ·LDik
τ i1,...,ikα )

+
k∑
l=1

(−1)k−lLDil

(
δuαi1,...,il−1

∧ (LDil+1
· · ·LDik

τ i1,...,ikα )
)
.

(5.25)

We will now rewrite this equation in multi-index notation. Using Equation (3.3),
we get ∑

k

∑
i1,...,ik

[i1, . . . , ik]!

k!
δuαi1,...,ik ∧ τ

i1,...,ik
α = ω .

The sum of the first term on the right side of Equation (5.25) is given by

Pω :=
∑
k

∑
i1,...,ik

[i1, . . . , ik]!

k!
(−1)kδuα ∧ (LDi1

· · ·LDik
τ i1,...,ikα )

= δuα ∧
∑
I

(−1)|I|LDI
τ Iα .
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Using Equation (5.23), we can write this as

Pω := δuα ∧ 1

p

∑
I

(−1)|I|LDI

( ∂

∂uαI
−7 ω
)
. (5.26)

Since the second term of the right side of Equation (5.24) is exact, the sum is also
exact. We conclude that in local coordinates every form ω ∈ Ωp,n(J∞F ), p > 0, can
be written as

ω = Pω + dη ,

for some η ∈ Ωp,n−1(J∞F ).

Theorem 5.2.1 (Thm. 2.12 in [And89]). Let F → M be a smooth fiber bun-
dle over an n-dimensional manifold. There is a unique family of linear operators
P : Ωp,n(J∞F )→ Ωp,n(J∞F ), p > 0, which is defined in local coordinates by Equa-
tion (5.26). It has the following properties:

(i) ω − Pω is locally d-exact for all ω ∈ Ωp,n(J∞F ), p > 0.

(ii) P is a projection, P 2 = P .

(iii) Pd = 0.

(iv) (Pδ)2 = 0.

Definition 5.2.2. The operator Ωp,n(J∞F ) → Ωp+1,n(J∞F ), ω 7→ Pδω is called
the Euler operator and denoted by E := Pδ.

Property (iv) states that E is a differential operator. Forms in PΩ1,n(J∞E) are
called source forms. More generally, forms in the image of P are sometimes called
functional forms [And89]. Properties (i)-(iv) are local.

5.2.2 The acyclicity theorem

Theorem 5.2.3 (Thm. 5.1 in [And89]). For p > 0, the augmented horizontal com-
plex

0→ Ωp,0(J∞F )
d−→ Ωp,1(J∞F )

d−→ . . .
d−→ Ωp,n(J∞F )

P−→ Ωp,n
fun(J

∞F )→ 0

is exact.

Corollary 5.2.4. Let P be the partial integration operator of Theorem 5.2.1; let
ω ∈ Ωp,n(J∞F ) for p > 0. Then ω − Pω is d-exact.

The rest of this section is devoted to the proof of this theorem. We first prove
local exactness by the construction of explicit homotopy operators. In a second step
we use a partition of unity and the generalized Mayer-Vietoris sequence to deduce
global exactness.

Proposition 5.2.5. Let F = Rn × Rm → Rn = M a trivial vector bundle. Then
the complex of Theorem 5.2.3 is exact.
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5.2.3 The cohomology of the Euler-Lagrange complex

Theorem 5.2.6. The cohomology of the Euler-Lagrange complex

0 −→ Ω0,0(J∞F )
d−→ Ω0,1(J∞F )

d−→ . . .

. . .
d−→ Ω0,n−1(J∞F )

d−→ Ω0,n(J∞F )
Pδ−→ Ω1,n

fun(J
∞F )

Pδ−→ Ω2,n
fun(J

∞F ) −→ . . .

where n = dimM , is isomorphic to the de Rham cohomology of the manifold F , that
is,

Hq
(
Ω0,•(J∞F ), d

) ∼= Hq(F ) , 0 ≤ q ≤ n− 1 (5.27a)

ker
(
Pδ : Ω0,n(J∞F )→ Ω1,n

fun(J
∞F )

)
d
(
Ω0,n−1(J∞F )

) ∼= Hn(F ) (5.27b)

Hp
(
Ω•,nfun(J

∞F ), P δ
) ∼= Hn+p(F ) , p ≥ 1 . (5.27c)

Warning 5.2.7. In Equation (5.26a) of [And89, Thm. 5.9], it is erroneously claimed
that (5.27a) holds for q = n. (This would imply that the horizontal cohomology of
closed forms in Ω0,n(J∞F ) for a vector bundle F over a non-compact manifold M
vanishes.) The correct statement is Equation (5.27b).

Exercises

In Exercises 5.1 through 5.4 we consider the following situation: Let V and H
be smooth manifolds. Recall, that every vector field X ∈ X(V × H) splits as
X = XV +XH into a vector field XV in the direction of V and a vector field XH in
the direction of H. The de Rham complex Ω(V ×H) is a bicomplex, that is, the ring
has a bigrading and the de Rham differential splits as d = dV +dH into a differential
dV of bidegree (1, 0) and a differential dH of bidegree (0, 1), which graded commute
dV dH = −dHdV . We will call V the vertical and H the horizontal manifold, XV

a vertical and XH a horizontal vector field, dV the vertical and dH the horizontal
differential, etc.

Exercise 5.1. Let (x1, . . . , xm) be local coordinates on V and (y1, . . . , yn) local
coordinates on H.

(i) Express a vector field X ∈ X(V × H), its vertical component XV , and its
horizontal component XH in local coordinates.

(ii) Let α be a (p, q)-form in Ω(V × H). Express α, dα, dV α, and dHα in local
coordinates.

Exercise 5.2. A form α ∈ Ω(V ×H) is called horizontal if ιXα = 0 for all vertical
vector fields X. It is called vertically invariant if LXα = 0 for all vertical vector
fields X. It is called horizontally basic if it is both, horizontal and vertically
invariant.

Show that α is horizontally basic if and only if it is the pullback of a form on H
by the projection prH : V ×H → H.
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Exercise 5.3. The trivial fiber bundle prH : V ×H → H is equipped with the trivial
connection, so that every vector field on H has a lift to a vector field on V ×H. A
vector field X on V × H will be called strictly horizontal if [ιX , dV ] = 0. (Here
ιX is the inner derivative and the bracket denotes the graded commutator.)

Show that X is strictly horizontal if and only if it is the lift of a vector field on
H.

Exercise 5.4. Recall that the Cartan calculus on Ω(V ×H) consists of the graded
derivations d, ιX , and LX for all vector fields X on V × H, satisfying the usual
commutation relations.

(i) Show that the graded derivations dH , ιX , and LX for strictly horizontal vector
fields X satisfy the commutation relations of a Cartan calculus. (We call
this the horizontal Cartan calculus. There is an analogous vertical Cartan
calculus.)

(ii) Show that the graded commutator of any derivation of the horizontal Cartan
calculus with any derivation of the vertical Cartan calculus vanishes.

Exercise 5.5. Let ω ∈ Ω(J∞F ) be a vertical form such that Lvω = 0 for all
horizontal vector fields v ∈ X(J∞F ). Show that ω is a locally constant function.

Exercise 5.6. Let Ck ⊂ TJkF be the Cartan distribution of Exercise 14. Let C be
the pro-manifold represented by C0 ← C1 ← . . . where the arrows are the tangent
maps of the forgetful maps.

(a) Show that the inclusions Ck → TJkF represent a morphism of bundles of
pro-manifolds over J∞F .

(b) Show that C is a vector subbundle, that is, at every point x : ∗ → J∞F , the
fiber Cx is a vector subspace of TxJ

∞F .

(c) Compute the rank of C, that is, the dimension of the fibers Cx.

(d) Show that a vector field v : J∞F → TJ∞F is horizontal if and only if it factors
through C.

(e) Show that C is integrable, that is, an involutive subbundle of TJ∞F .

Exercise 5.7. Show that every vector field v ∈ X(J∞F ) that leaves the Cartan
distribution invariant is of the form v = ξ+X where ξ is strictly vertical (Definition
5.1.19) and X is horizontal.



Chapter 6

The cohomological action principle

Recall from Definition 1.3.2 that a lagrangian is a smooth map L : F → Ωtop(M).
When M is closed we can define the action integral by

S(φ) :=

∫
M

L(φ) , (6.1)

The action principle states that the critical points of S are the solutions of the
equations of motion. If L is a local map, then the critical points of the action are
the solutions of a PDE, the Euler-Lagrange equation. We will give a proof of this
statement in Theorem 6.2.6, using the diffeological framework for the differential
geometry of the space F.

When M is not compact, the action integral will generally not be defined for
all fields. We might hope that we can circumvent this problem by restricting the
action to the subspace of fields for which it is defined. However, this restriction will
generally not be a smooth map (Exercise 2.7). Moreover, the condition that the
action integral is defined may exclude almost all solutions of the field equations, as
is the case in classical mechanics.

For a better approach, we observe that for the derivation of the Euler-Lagrange
equation we only need to be able to discard d-exact terms under the integral. This
suggests that the action principle may be reformulated as a cohomological statement
about the integrand. In a first attempt at such a cohomological formuation, we could
look at the map

F −→ Hn(M)

φ 7−→ [L(φ)] ,
(6.2)

where n is the dimension of M and where the bracket denotes the de Rham coho-
mology class in Hn(M). When M is a closed, connected, and orientable manifold,
then Hn(M) ∼= R. Once we have chosen a volume form as generator of Hn(M), the
map (6.2) is the action divided by the total volume ofM . WhenM is non-compact,
however, Hn(M) = 0 so that (6.2) is the zero map. We conclude that we cannot
simply replace the integral of the action by the cohomology class in Ω(M).

In order to obtain a mathematically rigorous and general action principle that
holds for M non-compact, we have to reformulate the notions of lagrangian, action,
critical point, symmetry, etc. within the cohomology of F × M and, locally, the
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cohomology of J∞F . It is straightforward to interpret the lagrangian as a (0, n)-
form on F×M . The integration overM should then be replaced by the cohomology
in the direction of M . This suggests the following dictionary:

Analysis Cohomology
Lagrangian L : F → Ωn(M) L ∈ Ω0,n(F ×M)

Action S =
∫
M
L : F → R [L]d ∈ H0,n

d (F ×M)
Symmetry Φ ∈ Diff(F) Φ∗S = S Φ∗L = L+ dα
Inf. symmetry ξ ∈ X(F) LξS = 0 LξL = dα
critical point φ ∈ F δφS = 0 ?

Here d is the horizontal differential, LξS the Lie derivative, and δS : TF → R
the differential, which can all be understood rigorously in terms of the diffeological
Cartan calculus. What is still missing is the cohomological version of the notion of
critical point of the action.

6.1 Local diffeological forms

6.1.1 Differential forms on elastic diffeological spaces

A differential k-form on an elastic diffeological space X can be viewed as multilinear
and antisymmetric morphism

α : TX ×X . . .×X TX︸ ︷︷ ︸
=:TkX

−→ R .

It is straightforward to define the inner derivative ιvα with respect to a vector
field v : X → TX by precomposing with v × id : Tk−1X → TkX. The evaluation of
the resulting (k − 1)-form at the tangent vectors w1

x, . . . , w
k−1
x ∈ TxX is given by

(ιvα)(w
1
x, . . . , w

k−1
x ) = α

(
v(x), w1

x, . . . , w
k−1
x

)
.

Similarly, the evaluation of α at x ∈ X is given by the restriction

αx : (TxX)k −→ R ,

to the fiber {x} ×X TkX ∼= (TxX)k.
The differential of a 0-form, that is, a function f : X → R is given by

df : TX
Tf−−−→ TR ∼= R× R pr2−−−→ R ,

where pr2 is the projection to the tangent fiber of TR. The differential of a higher
form α : TkX → R is more difficult to describe . It is easier to use the equivalent
description of the form as a family of differential forms {αp ∈ Ω(U)} on all plots
p : U → X that is compatible with the pullbacks along morphisms of plots, f ∗αp =
αf∗p where f : V → U is a smooth map. The differential of α is now given by the
family of differentials {dαp}.

The de Rham complex of a product X × Y of elastic diffeological spaces is a
bicomplex. A (p, q)-form is given by a morphism

α : TpX × TqY −→ R
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that is multilinear and antisymmetric with respect to the action of the product
Sp × Sq of the symmetric groups. Using that Dflg has all exponential objects,
we can view α as a morphism TpX → Dflg(TqY,R). The adjunction between the
product and the exponential space preserves multilinearity and antisymmetry, so
that a (p, q)-form can be equivalently viewed as a multilinear and antisymmetric
morphism

α : TpX −→ Ωq(Y ) , (6.3)

where Ωq(Y ) is equipped with the functional diffeology. In other words, a (p, q)-form
on X × Y can be viewed as a p-form on X with values in Ωq(Y ),

Ωp,q(X × Y ) ∼= Ωp
(
X,Ωq(Y )

)
.

The evaluation of the Ωq(Y )-valued p-form (6.3) at x ∈ X will be called the evalu-
ation of α at x ∈ X and denoted by αx. If αx : (TxX)p → Ωq(Y ) is the zero map,
α will be said to vanish at x.

Remark 6.1.1. The evaluation of α ∈ Ω0,q(X × Y ) at x ∈ X is the pullback of α
to {x} × Y ↪→ X × Y .

The Y -differential of a (p, q)-form is given in terms of the morphism (6.3) by

dY α : TpX
α−−→ Ωq(Y )

(−1)pdY−−−−−−→ Ωq+1(Y ) .

The X-differential of a (0, q)-form is given by

dXα : TX
Tα−−−→ TΩq(Y ) ∼= Ωq(Y )× Ωq(Y )

pr2−−−→ Ωq(Y ) ,

where pr2 is the projection to the fiber of TΩq(Y )→ Ωq(Y ).

Definition 6.1.2. A form α ∈ Ωp,q(X × Y ) will be called dY -closed at x ∈ X if
dY α vanishes at x. It will be called dY -exact at x if there is a (p, q − 1)-form β
such that α− dY β vanishes at x.

6.1.2 Local forms on F × M

A (p, q)-form α ∈ F ×M can be viewed equivalently as a morphism (6.3) of diffeo-
logical spaces,

α : TpF −→ Ωq(M) . (6.4)

Proposition 6.1.3. The multilinear and antisymmetric map (6.4) is local (Defini-
tion 3.2.1) if and only if, viewed as (p, q)-form on F ×M , it is the pullback along
j∞ of a (p, q)-form on J∞F .

Proof. By definition, the map (6.4) is local if and only if it descends to a map

α0 : J
k(VpF ) −→ ∧qT ∗M ,

where VpF = V F ×M . . .×M V F is the p-fold fiber product. Identifying T ∗M with a
fiber-wise linear map TM → R and then using the adjunction betweenMfld(TM, )
and ×TM , we can identify α0 with a map

α̃ : Jk(VpF )×M TqM −→ R
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that is fiber-wise linear and antisymmetric in the components of VpF and TqM . The
domain of α̃ can be written as

Jk(VpF )×M TqM ∼= Jk(VpF )×JkF (JkF ×M TqM) .

From (5.13) we see that α̃ can be viewed as a (p, q)-form on Jk+1F . By Theo-
rem 5.1.4, we obtain a commutative diagram

(TpF ×M)×F×M (F × TqM) R

J∞(VpF )×J∞F (J∞F ×M TqM)

α

Tpj∞×Tqj∞ α̃

This shows that α is the pullback of α̃ by j∞.

We will denote the space of local (p, q)-forms on F ×M by

Ωp,q
loc(F ×M) := (j∞)∗Ωp,q(J∞F ) .

As is the case for any pullback of differential forms, (j∞)∗ commutes with the dif-
ferentials. Moreover, since by Theorem 5.1.4 (j∞)∗ preserves the bigrading, it com-
mutes with the vertical and horizontal differential separately,

(j∞)∗δα = δ(j∞)∗α , (j∞)∗dα = d(j∞)∗α ,

for all α ∈ Ω(J∞F ). This can be stated as follows.

Proposition 6.1.4. The pullback (j∞)∗ : Ω(J∞F ) → Ω(F ×M) is a morphism of
bicomplexes.

Remark 6.1.5. If the evaluation j0 is surjective, then it follows from Theorem 5.1.4
that (j∞)∗ is injective so that we can identify Ωloc(F × M) with the variational
bicomplex Ω(J∞F ). In general, however, the bicomplex of local forms is a quotient
of the variational bicomplex.

The evaluation of a (p, q)-form at φ ∈ F is given by the restriction of the map
α : TpF → Ωq(M) to the fiber (TφF)

p ∼= {φ}×FTpF. If α is local, so that it descends
to α0 : J

k(V F )→ ∧qT ∗M , we have the commutative diagram

(TφF)
p ×M TpF ×M Ωq(M)×M

M ×jkφ Jk(VpF ) Jk(VpF ) ∧qT ∗M

jk

α×idM

jk j0

α0

where the first vertical arrow is the jet evaluation of the bundle φ∗VpF → M , the
second vertical arrow the jet evaluation of VpF → M , and the third vertical arrow
the evaluation of ∧qT ∗M →M . This suggests the following notion.
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Definition 6.1.6. The evaluation at φ ∈ F of a (p, q)-form on J∞F given by a
multilinear and antisymmetric map ω : J∞(V F )→ ∧qT ∗M is the restriction

ωφ :M ×j∞φ J∞(VpF ) −→ ∧qT ∗M .

We say that ω is zero at φ or vanishes at φ if ωφ is the zero map. The condition
ωφ = 0 is the PDE of the form ω.

In local coordinates, ω is given by (5.19) so that the PDE of ω is the system of
equations

ω
I1...Ip
α1...αpi1...iq

(
φα,

∂φα

∂xi1
, . . . ,

∂kφα

∂xi1 · · · ∂xik
)
= 0 .

We can view ω also as a section section ω : JkF → ∧p+qT ∗JkF . We have the
following commutative diagram,

M

M ×JkF (∧p+qT ∗JkF ) ∧p+qT ∗JkF

M JkF

M

ω◦jkφ

id π
JkF

id

jkφ

prM

ω

which is analogous to (2.40). This shows that ω ◦ jkφ is a section of the bundle
∧nT ∗JkF →M and that πJkF ◦ ωφ = jkφ. This gives rise to the local map

Dω : F −→ Γ(M,∧p+qT ∗JkF )
φ 7−→ ω ◦ jkφ .

(6.5)

The equation Dω(φ) = 0 is equivalent to the PDE ωφ = 0.

Warning 6.1.7. If F → M is a vector bundle, the bundle ∧p+qT ∗JkF → M is
a vector bundle, so that the target Γ(M,∧p+qT ∗JkF ) of the differential operator
φ 7→ ωjkφ is a vector space. However, the 0 on the right hand side of the PDE (9.6)
must not be viewed as the zero in this vector space but in Γ(M,φ∗ ∧p+q T ∗M).

Definition 6.1.8. A form ω ∈ Ωp,q(J∞F ) will be called d-closed at φ ∈ F if dω
vanishes at φ. It will be called d-exact at φ if there is a (p, q− 1)-form β such that
ω − dβ vanishes at φ.

Proposition 6.1.9. Let ω ∈ Ωp,q(J∞F ) and φ ∈ F. Then:

(i) ω vanishes at φ if and only if (j∞)∗ω ∈ Ωp,q(F ×M) vanishes at φ.

(ii) ω is d-closed at φ if and only if (j∞)∗ω is d-closed at φ.

(iii) If ω is d-exact at φ, then (j∞)∗ω is d-exact at φ.
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Proof. Let ṽ ∈ TjkmφJ
kF . By working in a tubular neighborhood of φ(M) ⊂ F we

can find a path t 7→ (ψt,mt) ∈ F ×M such that ψ0 = φ and d
dt
jkm(t)ψt = ṽ. This

shows that v := (ψ̇0, ṁ0) ∈ Tφ × M is mapped by Tjk to ṽ. We conclude that
Tj∞ : TφF × TmM → Tj∞m φJ

∞F is surjective. By definition of the pullback,(
(j∞)∗ω

)
φ
(v1, . . . , vp+q) = ωφ(Tj

∞v1, . . . , T j∞vp+2)

for all v1, . . . , vp+q ∈ TφF × TmM . Since Tj∞ is surjective at (φ,m) for all m ∈M ,
the left side vanishes for all v1, . . . , vp+q if and only if the right side does. This proves
(i).

Since (j∞)∗ is a morphism of bicomplexes,

d(j∞)∗ω = (j∞)∗dω .

By definition, (j∞)∗ω is d-closed at φ if and only if d(j∞)∗ω vanishes at φ. By (i),
(j∞)∗dω vanishes at φ if and only if dω vanishes at φ. By definition, this is the case
if ω is d-closed, which proves (ii).

Assume that there is a form α ∈ Ωp,q−1(J∞F ), such that ω − dα vanishes at φ.
Since

(j∞)∗ω − d(j∞)∗α = (j∞)∗(ω − dα) ,

it follows from (i) that the left side vanishes at φ, so that (j∞)∗ω is d-exact at φ.
This proves (iii).

6.2 The action principle

6.2.1 Euler-Lagrange form

It follows from Proposition 6.1.3 that a lagrangian L̃ : F → Ωn(M) is local if and
only if it is the pullback of a form L ∈ Ω0,n(J∞F ). It is convenient to formulate the
notion of local lagrangian field theory in terms of L.

Definition 6.2.1. A local lagrangian field theory is given by a manifold M , a
fiber bundle F → M , and a form L ∈ Ω0,n(J∞F ), where n = dimM , called the
lagrangian form.

A lagrangian form is given in local coordinates by

L = L(xi, uα, . . . , uαi1,...,ik) dx
1 ∧ . . . ∧ dxn ,

where k is the jet order of L. When we evaluate the lagrangian L̃ := (j∞)L at
φ ∈ F, we obtain

L̃(φ) = L
(
xi, φα,

∂φα

∂xi1
, . . . ,

∂kφα

∂xi1 · · · ∂xik
)
dx1 ∧ . . . ∧ dxn ,

which is the usual expression for the integrand of the action integral found in physics
textbooks.
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Definition 6.2.2. Let L be a lagrangian form. The form

EL ∈ Ω1,n(J∞F ) ,

where E = Pδ is the Euler operator (Definition 5.2.2), is called the Euler-Lagrange
form of L. The PDE

ELφ = 0 (6.6)

is called the Euler-Lagrange equation.

In local coordinates, the Euler-Lagrange form is given by

EL = Eαδu
α ∧ dx1 ∧ . . . ∧ dxn , (6.7)

where Eα = Eα(x
i, uβ, uβi1 , . . . , u

β
i1,...,ik

) are functions on some finite jet manifold JkF .
The Euler-Lagrange equation is the k-th order PDE given in local coordinates by

Eα

(
xi, φβ,

∂φβ

∂xi1
, . . . ,

∂kφβ

∂xi1 · · · ∂xik
)
= 0 .

Using the local coordinate formula (5.18a) for the vertical differential δ and the
formula (5.26) for the interior Euler operator P , we see that Eα is given in terms of
L by

Eα =
∑
|I|≤k

(−1)|I|DI

( ∂L
∂uαI

)
.

The Euler-Lagrange equation then takes the local coordinate form

∑
|I|≤k

(−1)|I| ∂
|I|

∂xI

( ∂L
∂uαI
◦ jkφ

)
= 0 .

Notation 6.2.3. In the physics literature it is customary to use the same notation

uαI ≡
∂|I|φα

∂xI
for the jet coordinate functions uαI and their evaluation at a field. With

this notation, the Euler-Lagrange equation is written as

∑
|I|≤k

(−1)|I| ∂
|I|

∂xI

(
∂L

∂(∂
|I|φα

∂xI
)

)
= 0 .

Definition 6.2.4. Let (M,F, L) be a local LFT. The diffeological subspace

Fshell = {φ ∈ F | ELφ = 0} ⊂ F

will be called the diffeological space of solutions of the Euler-Lagrange equation.

Terminology 6.2.5. Let (M,F, L) be a local LFT. The horizontal cohomology
class [L]d ∈ H0,top

d (J∞F ) will be called the action cohomology class or, short,
the action class.
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6.2.2 The Euler-Lagrange theorem

When M is closed and oriented, the action is defined by

S(φ) :=

∫
M

Lφ ,

which is a smooth map of diffeological spaces S : F → R.

Theorem 6.2.6 (Euler-Lagrange). Let (M,F, L) be a local lagrangian field theory
over a closed manifold M . Then φ ∈ F is a diffeological critical point of the action
if and only if φ is a solution of the Euler-Lagrange equation.

Proof. Let t 7→ φt ∈ F be a smooth path, which represents the tangent vector
φ̇0 ∈ Tφ0F. We get

ιφ̇0δS =
d

dt
S(φt)

∣∣∣
t=0

=

∫
M

∂

∂t
Lφt

∣∣∣
t=0

=

∫
M

∂

∂t

(
(j∞)∗L

)
φt

∣∣∣
t=0

=

∫
M

ιφ̇0δ(j
∞)∗L =

∫
M

ιφ̇0(j
∞)∗δL =

∫
M

ιφ̇0(j
∞)∗(PδL− dα)

=

∫
M

ιφ̇0(j
∞)∗EL−

∫
M

ιφ̇0d(j
∞)∗L

=

∫
M

ιφ̇0(j
∞)∗EL−

∫
M

dιφ̇0(j
∞)∗L

=

∫
M

ιTj∞φ̇0EL ,

where we have used the definition of the diffeological derivative, that for a smooth
integrand we can commute differentiation and integration, the definition of the eval-
uation of a form at φt, that the vertical differential δ an (j∞)∗ commute by Propo-
sition 6.1.4, that ω − Pω is d-exact by the acyclicity Theorem 5.2.3, the definition
of the Euler lagrange form EL = PδL, that the horizontal differential d an (j∞)∗

commute by Proposition 6.1.4, and ιφ̇0 and d commute since φ̇0 is vertical, and that
the integral over a d-exact integrand vanishes.

The integrand on the right hand side is of the form

ιTj∞φ̇0EL = (φ̇α0 )(Eα ◦ jkφ0) ∧ dx1 ∧ . . . ∧ dxn ,

where the Eα are smooth functions on some jet manifold JkF . The integral of the
right side vanishes for all functions φ̇α0 if and only Eα ◦ jkφ0 = 0, that is, if and only
if φ0 satisfies the Euler-Lagrange equation.

6.2.3 The cohomological Euler-Lagrange theorem

Theorem 6.2.7. Let (M,F, L) be a local LFT. Then δL is exact at φ ∈ F if and
only if φ is a solution of the Euler-Lagrange equation.

Theorem 6.2.7 will follow immediately from the following, more general result,
which we will also need for the theory of generalized Jacobi fields.
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Proposition 6.2.8. Let ω ∈ Ωp,top(J∞F ) where p > 0, let φ ∈ F, and let P be the
interior Euler operator. The following are equivalent:

(i) ω is d-exact at φ

(ii) Pω vanishes at φ.

For the proof of Proposition 6.2.8, we need the following two technical lemmas.

Lemma 6.2.9. Let ω ∈ Ω(J∞F ) and let v ∈ X(J∞F ) be a horizontal vector field.
If ω vanishes at φ ∈ F, then Lvω vanishes at φ.

Proof. The condition (Lvω)φ = 0 is local, so it can be checked in local coordinates
in which the vector field is of the form v = viDi for some functions vi ∈ C∞(J∞F ).
First, consider the case of a function f ∈ Ω0(J∞F ). Then

(Lvf)φ =
(
vi(Dif)

)
φ
= (vi ◦ j∞φ) ∂

∂xi
(f ◦ j∞φ) ,

where we have used Remark 5.1.10. If fφ = f ◦ j∞φ ∈ C∞(M) is zero, then the
right side is zero, which proves the statement for 0-forms. Let now ω ∈ Ωp,q(J∞F ).
In local coordinates

ω = ω
I1...Ip
α1...αpi1...iq

δuα1
I1
∧ . . . ∧ δuαp

Ip
∧ dxi1 ∧ . . . ∧ dxiq

= ω
I1...Ip
α1...αpi1...iq

τ
α1...αpi1...iq
I1...Ip

,

where
τ
α1...αpi1...iq
I1...Ip

:= δuα1
I1
∧ . . . ∧ δuαp

Ip
∧ dxi1 ∧ . . . ∧ dxiq .

The form ω vanishes at φ if and only if the functions ω
I1...Ip
α1...αpi1...iq

vanish at φ. For
the Lie derivative with respect to v we obtain

Lvω = (Lvω
I1...Ip
α1...αpi1...iq

)τ
α1...αpi1...iq
I1...Ip

+ ω
I1...Ip
α1...αpi1...iq

(Lvτ
α1...αpi1...iq
I1...Ip

) .

Assume that the functions ω
I1...Ip
α1...αpi1...iq

vanish at φ. We have already shown that
their Lie derivatives with respect to v vanish at φ, so that both terms on the right
hand side vanish at φ.

Lemma 6.2.10. Let ω ∈ Ωp,n(J∞F ) where p > 0, let φ ∈ F, and let P be the
interior Euler operator. If ω vanishes at φ, then Pω vanishes at φ.

Proof. The condition (Pω)φ = 0 is local, so it can be checked in local coordinates,
in which Pω is given by Equation (5.26), that is,

Pω = δuα ∧ 1

p

∑
I

(−1)|I|LDI

( ∂

∂uαI
−7 ω
)
. (6.8)

Assume that ω vanishes at φ. Then ∂
∂uαI
−7 ω vanishes at φ. It follows from

Lemma 6.2.9 that

LDI

( ∂

∂uαI
−7 ω
)
= (LD1)

I1 · · · (LDn)
In
( ∂

∂uαI
−7 ω
)

vanishes at φ. Since each summand on the right hand side of Equation (6.8) vanishes
at φ, so does the sum Pω.
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Proof of Proposition 6.2.8. Assume (i). Then there is a form α ∈ Ωp,q−1(J∞F ), so
that ω − dα vanishes at φ. By Lemmma 6.2.10, it follows that P (ω − dα) = Pω
vanishes at φ.

Proof of Theorem 6.2.7. By Proposition 6.2.8, δL is exact at φ if and only if PδL =
EL vanishes at φ, that is, if and only if ELφ = 0.

The proof of Theorem 6.2.7 sidesteps integration altogether. It only uses, via
Proposition 6.2.8, basic properties of the interior Euler operator P , which is the
cohomological replacement for partial integration.

6.2.4 The inverse problem of Lagrangian Field Theory

Given a PDE, how can we decide whether it is the Euler-Lagrange equation of an
LFT? This is the inverse problem of Lagrangian Field Theory. In our setup, a k-th
order PDE is to be given by local functions ωα : JkF

∣∣
U
→ R, 1 ≤ α ≤ dimFm on

an open cover {U →M} that define by the local expression (6.7) a (1, n)-form ω of
source type. The inverse problem now consists of finding a lagrangian L such that

ω = PδL .

A necessary condition is that ω is closed in the Euler-Lagrange complex (Theo-
rem 5.2.6),

Pδω = 0 ,

called the Helmholtz condition. It can be checked in local coordinates, using the
formulas for δ and P . If it is satisfied, then the obstruction to the existence of a
lagrangian lies in the cohomology

H1
(
Ω•,nfun(J

∞F ), P δ
) ∼= Hn+1(F ) .

For example, if F →M is a vector bundle, then Hn+1(F ) = 0, so that the obstruc-
tion vanishes. In this case, every form that satisfies the Helmholtz condition is the
Euler-Lagrange equation of some lagrangian.



Appendix A

Useful facts

Given a functor Φ : I → J and an object j ∈ J, the comma category j ↓Φ has
as objects pairs (i, j → Φ(i)) and as morphisms commutative triangles j → Φ(i)→
Φ(i′).

Proposition A.0.1. Let F : C→ D be a functor and assume that D has all colimits.
Then the left Kan extension of F along the Yoneda embedding Y : C → SetC

op

preserves all colimits.

Proof. The left Kan extension to a complete category is pointwise, so that it can be
expressed as coend

(LanY F )(S) ∼=
∫ C

SetC
op

(Y C,X)⊗ FC ,

for all X ∈ SetC
op

. The copower functor ⊗ : Set×D→ D is defined by the natural
isomorphism

D
(
S ⊗D,D′

) ∼= Set
(
S,D(D,D′)

)
,

which implies that ⊗D : Set → D is left adjoint to D(D, ). The left Kan
extension is the composition of the functor

SetC
op

(Y C, ) : SetC
op −→ Set

with the functor
⊗FC : Set −→ D ,

followed by the coend. By the Yoneda lemma, the first functor is

SetC
op

(Y C,X) ∼= X(C) .

Since colimits in functor categories are computed pointwise, this functor commutes
with colimits. The second functor preserves colimits because it is a left adjoint.
Finally, the coend is itself given by a colimit, so that it, too, preserves colimits. We
conclude that the left Kan extension preserves colimits.

Proposition A.0.2. A category I is filtered if and only if every finite diagram
D : J→ I has a cocone.
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Proof. Recall that a cocone over a diagram D is an object i ∈ I and a natural
transformation τ : D → ∆i, where ∆i : J → I, j 7→ i denotes the constant functor
with value i. This means that for every j ∈ J there is a morphism τj : Dj → i such
that for every f : j → j′ in J we have τj′ ◦Df = τj. There are three basic examples
for cocones:

When J = ∅, then a cocone is an object i in I, so that I is non-empty. When
J has two objects with no arrows between them, then a J-diagram consists of a
diagram of type (ii) in Def. 4.1.2. When J consists of two parallel morphisms from
j1 to j2, then a cocone is a diagram of type (iii) in Def. 4.1.2. We conclude that if I
has cocones on all finite diagrams, then I is filtered.

Conversely, assume that I is filtered and let D : J → I be a finite diagram. If
J = ∅, then D has a cocone since I is not empty by property (i) in Def. 4.1.2. Now,
assume that J is not empty and let {j1, . . . , jn} be its set of objects. Then, for every
jk, jl in J, there is a diagram

D(jk) D(jl)

ikl

in I by property (ii) in Def. 4.1.2. Furthermore, for every r ← i → s in I, there
exists an element t ∈ I and morphisms r → t and s→ t such that the diagram

i

r s

t

commutes by properties (ii) and (iii) of Def. 4.1.2. All in all, we get the following
commutative diagram

D(j1) D(j2) · · · · · · D(jn)

i12 i23 · · · i(n−1)n

i13 · · · · · ·

i14 · · ·

i
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Lastly, for all f : jk → jl in J, one can choose the element ikl such that the diagram

D(jk) D(jl)

ikl

D(f)

commutes again by the properties of a filtered category. It follows that i ∈ I is a
cocone for the finite diagram D.
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[GP17] Batu Güneysu and Markus J. Pflaum. The profinite dimensional
manifold structure of formal solution spaces of formally integrable
PDEs. SIGMA Symmetry Integrability Geom. Methods Appl., 13:Pa-
per No. 003, 44, 2017.

[GU71] Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien.
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(N.S.), 21(3-4):156–174, 2011.
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