1. For a compact oriented n-manifold x, define the double of x to be

$$
D x=x \underset{\partial x}{\cup} \bar{x}
$$

where \bar{x} is x with the reversed orientation, and $\bar{x} \& \bar{x}$ are glued 1 using the identity map on $\partial X=\partial \bar{X}$ (as moriented nefeds).

Let X be a 4 -wfld with no 3 -or 4 -handles. Given a Kirby diagram for X, describe how to get a Kirby diagram for $D X$.
Hint: the double of $S^{2} \times D^{2}$ is $S^{2} \times S^{2}$. How ave their Kirby diagrams nelated? Tun the handles of \bar{X} upside donn.

Show that the manifold below is contrachble and that its double is S^{4}.

When $n=0$, thin is called the Akbulut corse
2. We sew in class that the diagram on the right gives the 4 -torus $T^{4}=s^{\prime} \times s^{1} \times s^{1} \times s^{1}$. Find four way p to identify this with $S^{\prime} \times T^{3}$. Find six (different) copies of T^{2} in the figure.

3. We saw that the diag ram on the right gives the 3-torns $T^{3}=S^{\prime} \times s^{\prime} \times s^{\prime}$. Find three (different) copies of T^{2} in the figure. Find tho dor that intersect mansversely in a comologically nontrivial circle, and three tori that intersect in a
 single point

